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Editor’s preface

The application of cyclic loading on non-cohesive soils even with small amplitudes but with

a large number of cycles leads to significant plastic deformations. This phenomenon is well

known over 60 years in soil mechanics but up to now neither objective models nor reliable

methods have been developed for the solution of the respective engineering problems.

For the newly developed systems of high speed railway tracks, magnetic levitation trains,

wind power generation plants, watergates, storage tanks etc. which in their design life

are subjected to a large amount of loading cycles, design tools for the estimation of

their serviceability are required. The foundation of these structures has to be designed

for polycyclic non-linear soil-structure interaction effects and therefore the demand for

reliable and objective models in this area is quite high.

In the past empirical formulas for the accumulation behaviour of foundation elements

due to cyclic loading have been developed based on model tests. These approximations

were not accurate enough for a polycyclic loading: they were only applicable for a specific

boundary value problem without the possibility of extension of their validity to similar

other problems and most of them were not objective. In addition, numerical algorithms of

implicit nature using either elasto-plastic or elasto-hypoplastic constitutive relations for

the soil have not been able to calculate the long-term behaviour of structures subjected

to polycyclic loading due to the accumulation of numerical errors caused by the time

integration techniques or procedures.

In this thesis of Wichtmann a very comprehensive literature review is presented which

can be regarded as a state-of-the-art for the up to date knowledge in the field of cyclic

accumulation in non-cohesive soils. The experiments have been performed with a very

high accuracy and in a very careful manner so that the findings, which partially disprove

findings of other researchers, are used for the formulation of an explicit accumulation

model considering effects of the barotropy, pyknotropy, historiotropy, change of strain

polarization, stress ratio, etc. This explicit model has been implemented in a combined

numerical strategy consisting of implicit and explicit schemes for the solution of accumu-

lation problems in the engineering practise. In the thesis some numerical results for the

behaviour of strip footings and piles due to a vertical cyclic loading have been presented

as well as the validation of model tests carried out at our institute. In the meantime

this model is implemented for the numerical solution of more complex problems like the

serviceability of reinforced earth embankments due to cyclic loading and the simulation

of deep vibratory compaction techniques.

The basic outcome of this study is the determination or validation of the cyclic flow rule

and the simple formula for the accumulation intensity as a scalar function. The advantages
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of the accumulation model in comparison to the existing approaches in the literature are

clearly demonstrated as well as the prediction accuracy of the model by comparison with

respective laboratory tests.

This work opens a large area of scientific work for the coming years and offers in the

meantime a simple tool for the solution of engineering problems, which deal with high

numbers of loading cycles.

The present work has been financially supported by the DFG (German Research Council)

with the partial project A8 within the frame of the collaborative research centre SFB 398

”Life time oriented design concepts”, which is gratefully acknowledged herewith.

Theodoros Triantafyllidis
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Soil Mechanics of Ruhr-University Bochum in the period 2001 - 2005. It presents the

results of numerous cyclic laboratory tests on sand and describes an explicit accumulation

model which is based on these experiments. The accumulation model is capable to predict
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I am deeply indebted to many persons who were involved in this work. First, I want to

thank my first supervisor Prof. Th. Triantafyllidis for his guidance during my research,

for his continuous interest in my work and for many valuable discussions. He provided

the financial and consultant support to arrange our high-standard laboratory for cyclic

and dynamic testing of soils here in Bochum.
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Chapter 1

Introduction

1.1 Theme and objective of this work

If a foundation passes cyclic loads into a soil, the residual settlement increases with the

number of cycles (Figure 1.1). This is due to the fact that the nearly closed stress loops,

resulting from external loading, lead to not perfectly closed strain loops. Thus, with each

cycle an irreversible deformation remains in the soil. The extent of accumulation of resid-

ual settlements depends on the loading of the foundation (average load, load amplitude)

and on the current state of the soil. In the case of non-cohesive soils especially the soil

density and the fabric of the grain skeleton are of importance. Even small amplitudes can

cause significant settlements if the number of cycles is high (e.g. N > 103, so-called poly-

or high-cyclic loading).

�
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�
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� av

s

�

s

Figure 1.1: Settlements of a foundation under cyclic loading

A cyclic loading of a foundation may be caused by crossing vehicles (e.g. railways, mag-

netic levitation trains, cars, crane rails), by wind (e.g. wind power plants on-shore as well

as off-shore), by waves (e.g. coastal structures), by changing water levels or fillings (e.g.

watergates, tanks, silos) or rotating unbalances (e.g. machine foundations). The cyclic

loading can be of a deterministic or a random nature. Also the installation of sheet pile
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2 Chapter 1. Introduction

walls or piles using vibratory drivers leads to a cyclic shearing of the surrounding soil.

Some densification techniques (deep vibratory compaction, vibratory compaction at the

soil surface) make use of cyclic loading in order to improve the mechanical properties of

the soil (shear strength, stiffness, liquefaction resistance).

The residual deformations due to cyclic loading concentrate much stronger in the vicinity

of the foundation than those due to monotonic loading (see Section 8.4). Thus, there

are larger differential settlements, due to the spatial fluctuation of the state variables,

occuring for cyclic loading than for monotonic loading.

In the literature, one may find several reports on damages in buildings in connection

with cyclic loading of their foundations. Damages in structures (bridge, hall, apartment

houses) near railways due to differential settlements were documented e.g. by Heller [47].

The non-uniform deformations of the sandy subsoil induced by cyclic loading led to cracks

in walls and ceilings. Due to the damages parts of the hall even had to be teared down.

Some years later Heller [48] reported on settlements of foundations on sand below the piers

of a crane rail (Figure 1.2). After a few years of operation differential settlements resulted

in a tilting of the crane rail. They could be attributed to the non-uniform loading of the

piers due to the running of the trolley. Wolffersdorff & Schwab [173] described damages

at the concrete structure of watergate ”Uelzen I” (waterway ”Elbe-Seitenkanal”) due to a

large number of operations. The watergate had to be repaired several times, because the

soil-structure interaction under cyclic loading with large deformations was not sufficiently

taken into account during the design. On settlements of oil and water storage tanks and

silos on predominantly non-cohesive soils under cyclic loading was reported by Sweeney &

Lambson [155]. They summarized measurements of several authors. After a small number

of cycles (N < 100) the residual settlement reached twice the settlement after the first

filling (Figure 1.3). The tanks suffered no damage since the settlements were uniform.

Problems concerning connection pipes could arise from differential settlements, e.g. if a

group of tanks is unequally used.

It is desirable to estimate the settlements and differential settlements of a cyclically loaded

foundation already during the design phase. If tolerances for the differential settlements

were exceeded, counteractive measures (e.g. change of the foundation or soil improvement)

could be applied. For this purpose simple engineering models using laboratory tests and

settlement laws of the shape s(N, ...), based on small-scale 1g-model tests and centrifuge

model tests, were developed. However, their application is restricted to simple foundation

geometries. More complex boundary value problems with cyclic loading can be studied

numerically by means of the finite element method (FEM). The so-called implicit method,

wherein each cycle is calculated with a σ̇-ε̇ constitutive model and many strain increments,

is not applicable for a number of cycles N > 50 because of the accumulation of numerical
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errors and the huge calculation effort. In this case the so-called explicit method is superior

to the implicit one. An explicit model treats the accumulation of residual strains under

cyclic loading similar to the problem of creep under constant loads.

In the literature one may find several explicit models, which are summarized and discussed

in Chapter 6. Most of these models describe the material behaviour in a very simplified

manner, i.e. they ignore important influences (e.g. the influence of the shape of the stress

or strain loop or the average stress) or they describe only a portion of accumulation (e.g.

only the volumetric one). Some models were developed for special cases only, e.g. for an

isotropic stress superposed by uniaxial vertical stress cycles.

The experimental basis of many explicit models is thin. Most studies with drained cyclic

laboratory tests are restricted to the examination of a few influencing parameters (e.g.

only the strain amplitude and the void ratio are varied) or only a single effect of cyclic

loading (e.g. the flow rule or the volumetric portion of accumulation) is studied.

The aim of this work was the development and inspection of an explicit accumulation

model (so-called ”Bochum accumulation model”) for the FE-prognosis of residual settle-

ments in non-cohesive soils under cyclic loading. This model should describe the evolution

of the full strain tensor (i.e. the evolution of the volumetric as well as of the deviatoric

portion) and should consider all essential influencing parameters. An extensive laboratory

program with drained cyclic tests was planned to serve as the basis of the model. All

influencing parameters should be studied on a single sand. With the accumulation model
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shallow foundations and piles under cyclic loading had to be analyzed using FE calcu-

lations. Special attention was payed to the problem of the determination of the initial

fabric of the grain skeleton or the cyclic loading history (so-called ”cyclic preloading” or

”historiotropy”) in situ.

1.2 Strain vs. stress accumulation

Within this work the term ”accumulation” is used in such way that it can stand for an

increase as well as a decrease of the value of a variable. The above-mentioned accumulation

of strain in the case of (nearly) closed stress loops (Figure 1.4a) is a special case of

the accumulation phenomenon under cyclic loading. The stress-controlled drained cyclic

triaxial test conforms with this case. Depending on the boundary conditions a cyclic

loading can lead to residual strains and/or a change of stress. If the strain loops are

closed, the material reacts with not perfectly closed stress loops (Figure 1.4b) and thus

the stress accumulates, which mostly manifests itself in relaxation. An example is the

displacement-controlled undrained cyclic triaxial test on fully water-saturated specimens

(deformation with constant volume). Also a simultaneous accumulation of stress and

strain is possible (Figure 1.4c). This material response is obtained e.g. in an undrained

cyclic triaxial test on fully water-saturated specimens with a control of the deviatoric

stress.
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Figure 1.4: Accumulation of stress or strain, illustrated for the two-dimensional case
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The accumulation of stress under cyclic loading is important e.g. in the case of fully

water-saturated soils and poor or insufficient drainage conditions (e.g. if the permeability

is small and the loading frequency is high). In this case the cyclic shearing does not lead

to compaction but to a build-up of excess pore water pressures u. These excess pore

water pressures cause a reduction of the effective stress σ ′ = σ − u (at konstant total

stress σ) and thus a decrease of shear strength and stiffness. In the case σ = u, i.e. σ ′ = 0

the soil looses any shear strength and ”liquefies”. In dependence on the amount of the

accumulated excess pore water pressures the serviceability or even the load capacity of a

foundation may be endangered. The described problem is of importance e.g. for coastal

or off-shore structures. Also in the case of earthquakes seismic shear waves cause a cyclic

loading of the soil and thus often a build-up of excess pore water pressures. However, in

that case in contrast to the examples given above, the number of cycles is low (usually

N < 20) and the strain amplitudes are large (εampl > 10−3).

The accumulation model presented in Chapter 7 predicts strain or stress accumulation

depending on the boundary conditions.

1.3 Quasi-static vs. dynamic loading

If the cycles are applied with a low loading frequency fB, the inertia forces are not

considered or are negligible and it is spoken of a quasi-static cyclic loading. If the loading

frequency is large, inertia forces are relevant and the loading is dynamic. The border

between quasi-static and dynamic loading depends also on the amplitude of the cycles.

A harmonic excitation with the displacement u = uampl cos(ωt) and the acceleration ü =

−uamplω2 cos(ωt) is quasi-static, if uamplω2 � g holds with g being the acceleration of

gravity. Often this amplitude dependence is ignored and the border between quasi-static

and dynamic loading is said to lay at fB ≈ 5 Hz. At a certain strain amplitude tests up to

fB = 30 Hz in the literature (Section 3.2.2.8) and also the own tests (Section 5.2.5) showed

no influence of the loading frequency fB on the secant stiffness (elastic portion of strain)

and on the accumulation rate of residual strain. The accumulation model presented in

Chapter 7 uses the strain amplitude as a basic variable. The strain amplitude is evaluated

from the strain loop within a cycle. For the model it is irrelevant if this strain loop results

from quasi-static or dynamic loading. The explicit model is thus applicable independently

of the loading frequency. Therefore, in the following a distinction between quasi-static

and dynamic loading is set beside and the general denotation cyclic loading is used.
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1.4 Explicit vs. implicit method

In FE calculations of the accumulation due to cyclic loading two different numerical

strategies can be considered: the implicit and the explicit method.

In the implicit procedure each cycle is calculated with a σ̇-ε̇ constitutive model. The ac-

cumulation results as a by-product due to the not perfectly closed stress or strain loops.

Elastoplastic multi-surface models (Mróz et al. [97], Chaboche [18, 19]), endochronic

models (Valanis & Fee [170]) or the hypoplastic model with intergranular strain (Kolym-

bas [78], Gudehus [38], von Wolffersdorff [172], Niemunis & Herle [106]) can be used. The

applicability of the implicit method is restricted to a low number of cycles (N < 50) be-

cause with each increment an accumulation of systematic errors of the constitutive model

or the integration scheme takes place (Niemunis [104]). Even small errors accumulate sig-

nificantly (e.g. with a factor 106, if 104 cycles are calculated each with 100 increments).

Thus, a constitutive model of an unreachable perfection would be necessary. Also the

large calculation effort sets boundaries to the application of the implicit method. Wolf-

fersdorff & Schwab [173] had to restrict their implicit FE calculation of watergate ”Uelzen

I” to less than 25 cycles.

For high-cyclic loading in general explicit models are the better choice. They treat the

process of accumulation under cyclic loading similar to a process governed by viscosity.

The number of cycles N replaces the time t. First, two cycles are calculated implicitly with

strain increments (Figure 1.5) using a σ̇-ε̇ constitutive model (e.g. the hypoplastic model

with intergranular strain as in this work). This implicit calculation can be performed

quasi-static or dynamic. During the second cycle in each integration point the strain loop

is recorded as a series of discrete strain points. The recording follows some predefined

criteria (e.g. a change of the direction of the strain path and a minimum distance to

the last recorded point). The strain amplitude εampl is determined from this strain loop

(see Figure 1.5 and the definition in Section 7.2.1). The first cycle is not suitable for the

determination of εampl, since the deformations in the first cycle can significantly differ

from those in the subsequent cycles (Figure 1.5, the first quarter of the first cycle up

to the maximum load is a first loading). The amplitude of the second cycle is more

representative for the amplitudes in the following cycles.

The accumulation starting from the second cycle is calculated directly by means of an

equation of the shape

T̊ = E : (D − Dacc) (1.1)

(T̊: Jaumann stress rate, D: strain rate, Dacc: given accumulation rate, E: elastic stiff-

ness), without following the strain path during the particular cycles, i.e. Equation (1.1)
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Figure 1.5: Procedure of a explicit calculation of accumulation

delivers the increment of residual strain or of stress due to a package of ∆N (e.g. 20)

cycles directly. Depending on the boundary conditions Equation (1.1) leads to an accu-

mulation of stress (e.g. T̊ = −E : Dacc at D = 0) and/or strain (D = Dacc at T̊ = 0). In

the case T̊ = 0 the strain follows the average accumulation curve ε
acc(N) given in Figure

1.5.

For this explicit calculation the strain amplitude εampl is assumed constant. Due to a

compaction and a re-distribution of stress the stiffness and thus the strain amplitude may

change. The explicit calculation can be interrupted after definite numbers of cycles and

εampl can be updated in an implicit so-called control cycle (Figure 1.5). In a control cycle

also the static admissibility of the state of stress and the overall stability can be checked.

The latter one can get lost e.g. in the undrained case due to excess pore water pressures.

1.5 Outline of this thesis

In Chapter 2 the essential definitions used within this thesis are summarized.

Chapter 3 gives an overview about experimental studies on non-cohesive soils in the

literature. First different methods to study cyclic loading and varying types of laboratory

tests are mentioned. Then the influence of several parameters on the residual strains is

discussed. Also the main dependencies of the hysteretic stiffness are summarized. In the

following model tests and settlement laws for shallow foundations and piles are reviewed.

In Chapter 4 the testing devices used in this work (cyclic triaxial device, cyclic multi-

dimensional simple shear device, resonant column device, triaxial cell with piezoelectric

elements) are introduced. The characteristics of the tested grain size distributions and the

material behaviour under monotonic loading (drained and undrained monotonic triaxial
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tests, oedometric compression tests) are presented. The problem of membrane penetration

in the case of a cyclic variation of the cell pressure σ3 is discussed.

Chapter 5 presents the results of the cyclic laboratory tests. Different amplitudes (the

span, shape and polarization were varied), average stresses (the average mean pressure

pav and the average stress ratio ηav = qav/pav were varied), initial void ratios, loading

frequencies, monotonic preloadings and grain size distribution curves were tested. Also

changes of the direction of cyclic shearing and of the amplitude (packages of cycles)

were studied. In Section 5.1 the test results are analyzed concerning the direction of

accumulation (”flow rule”, ratio of the volumetric and the deviatoric accumulation rate).

In Section 5.2 they are discussed with respect to the intensity of accumulation. The own

test results are compared to those documented in the literature.

Chapter 6 presents several explicit accumulation models in the literature and discusses

their advantages and deficits. The need for a more general model, which considers all

influencing parameters, is emphasised.

The explicit accumulation model developed on the basis of the laboratory tests is presented

in Chapter 7. Several elements of the model are discussed in detail. The explanation of

the tensorial amplitude definition and a new state variable for considering polarization

changes is restricted to the two-dimensional case. The full tensor notation of the model

is given in Appendix III. The accumulation model is validated by the re-calculation of

element tests. In Chapter 7 also a description of the hypoplastic model with intergranular

strain is given. This model was used in the implicit calculation steps. Its performance

(deformations under monotonic loading, strain amplitudes) is discussed.

In Chapter 8 first the re-calculation of a centrifuge model test from the literature with

a cyclically loaded strip foundation is presented. Then, parameter studies of shallow

foundations under cyclic loading are shown. The state variables of the soil, the foundation

geometry and the loading was varied. Also some technical aspects of FE calculations

with an explicit accumulation model are addressed. Finally, FE calculations of a pile

cyclically loaded in the axial direction and other applications of the accumulation model

are presented.

In Chapter 9 the issue is broached to the determination of the initial fabric of the soil skele-

ton or the historiotropy (cyclic preloading), respectively of the in situ soil. A correlation

of the historiotropy with both the dynamic soil properties and the so-called ”liquefac-

tion resistance” was studied in laboratory tests. Possible alternative methods for the

determination of the historiotropy are mentioned.

Finally, in Chapter 10 the main results of this work are summarized and an outlook on

further research activities is given.



Chapter 2

Definitions

The notation of scalar and tensorial quantities used in this thesis is given in Appendix I. In

Chapter 7, presenting the description of the explicit accumulation model, the sign conven-

tion of mechanics (tension stress and elongation are positive) is used. In all other chapters

the sign convention of soil mechanics (compression stress and compression strain are pos-

itive) is applied. This choice has been made since most publications on experiments use

the sign convention of soil mechanics whereas in the literature on constitutive modelling

the sign convention of mechanics is commonly adopted. In this chapter the definitions are

introduced for the case of an axisymmetric loading. The tensorial generalization is given

in Appendix II.

2.1 Stress

The effective state of stress at a point in the three-dimensional space is described by the

Cauchy stress tensor σ. The axial stress component is denoted by σ1 and the lateral one by

σ2 = σ3 (Figure 2.1). With the exception of the sections 4.3.3, 4.4 and 9.2 the designation

of effective stress components by a superposed t′ is set beside (in the respective sections

the deviating notation is explicitly mentioned). The Roscoe invariants p (mean pressure)

and q (deviatoric stress) are used as well as the Lode angle θ:

p =
1

3
(σ1 + 2 σ3) (2.1)

q = σ1 − σ3 (2.2)

θ =
1

3
arccos

(

−3
√

3J3

2J2
3/2

)

(2.3)

9
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In Equation (2.3) J2 and J3 are basic invariants of the stress deviator (see also Appendix

II). An alternative to p and q are the so-called ”isomorphic” variables

P =
√

3 p and Q =
√

2/3 q. (2.4)

Using isomorphic variables two vectors, which are orthogonal to each other in the three-

dimensional σ1-σ2-σ3-principal stress coordinate system, preserve their orthogonality in

the P -Q-plane. This does not apply to the p-q-coordinate system (Niemunis [105]).

�

1

�

3

�

2 = �

3

�

1

�

3

�

2 = �

3

Figure 2.1: Definiton of stress and strain components in the triaxial test

In the p-q-plane the state of stress (Figure 2.2) can be described by the stress ratio

η = q/p (2.5)

or alternatively by Ȳ :

Ȳ =
Y − Yi

Yc − Yi

=
Y − 9

Yc − 9
, Y = − I1I2

I3
, Yc =

9 − sin2 ϕc

1 − sin2 ϕc

(2.6)

The function Y of Matsuoka & Nakai [95] is related to η as follows:

Y =
27(3 + η)

(3 + 2η)(3 − η)
, η =

3Y − 27

4Y
±

√
(

3Y − 27

4Y

)2

+
9Y − 81

2Y
(2.7)

The Ii in Equation (2.6) are the basic invariants of the stress σ (see also Appendix II). In

Equation (2.6), ϕc is the critical friction angle (critical state = progressive deformation

without change of stress and volume). The state variable Ȳ takes the value 0 for isotropic

stresses (η = 0, Y = Yi = 9) and is 1 for a critical stress ratio (η = Mc(ϕc) or η = Me(ϕc),

Y = Yc). The inclinations Mc and Me of the borderlines in the p-q-plane (Figure 2.2) can

be calculated from:

Mc =
6 sinϕ

3 − sinϕ
and Me = − 6 sinϕ

3 + sinϕ
. (2.8)
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Therein ϕ = ϕc has to be chosen for the critical state line (CSL) and ϕ = ϕp for the

maximum shear strength (ϕp = peak friction angle). The inclinations in the P -Q-plane

are McPQ = 2/
√

18 Mc and MePQ = 2/
√

18 Me. In the triaxial case the stress ratios

K = σ3/σ1 and η are connected via

η =
3(1 −K)

2K + 1
(2.9)

For K = 0.5 one obtains η = 0.75 and Ȳ = 0.341.

q

pav

qav

1

1

1
Mc( � c)

Mc( � p)

Me( � c)

� av 
= qav/pav

average
stress

� av

ampl

pampl

CSL

�

1

1
Me( � p)

p = ( �
1 + 2 �

3)/3

q = �
1 - �

3

Figure 2.2: Cyclic stress path in the p-q-plane

Figure 2.2 shows a stress path in the p-q-plane, which is typical for a cyclic triaxial test.

An average stress σ
av (described by pav and qav or ηav or Ȳ av) is superposed by a cyclic

portion. An oscillation of the axial and the lateral stresses σ1(t) and σ3(t) without a phase-

shift in time (in-phase-cycles, see Section 2.4) results in stress cycles along a straight line

with a certain inclination tanα = qampl/pampl in the p-q-plane (Figure 2.2). For the special

case of constant lateral stresses (σampl
3 = 0) tanα = 3 holds and the amplitude ratio

ζ =
σampl

1

pav
=

qampl

pav
(2.10)

is used. More complex stress paths, e.g. ellipses in the p-q-plane, can be tested, if the

stress components σ1(t) and σ3(t) are applied with a phase-shift in time (out-of-phase-

cycles, see Section 2.4).
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2.2 Strain

The definitions are explained for the strain ε, although they are also valid for its rate ε̇

In the context of cyclic loading ”rate” means a derivative with respect to the number of

cycles N , i.e. ṫ = ∂ t /∂N instead of ṫ = ∂ t /∂t (in which the discrete number of cycles

N is treated as a ”smoothed” continuous variable). The strain in the axial direction is

denoted with ε1 and the one in the lateral direction with ε2 = ε3. The strain invariants

εv = ε1 + 2 ε3 (2.11)

εq =
2

3
(ε1 − ε3) (2.12)

are used. The rates of the volumetric strain ε̇v and the deviatoric strain ε̇q are work-

conjugated to the Roscoe invariants p and q. The isomorphic strain invariants are

εP = 1/
√

3 εv and εQ =
√

3/2 εq. (2.13)

The total strain is

ε =
√

(ε1)2 + 2(ε3)2 =
√

(εP )2 + (εQ)2. (2.14)

As an alternative to εq the shear strain

γ = ε1 − ε3 (2.15)

is used. In the case of cyclic loading the strain ε is composed of an accumulated, residual

portion (εacc) and an elastic, resilient portion (εampl). In Figure 2.3 this is illustrated for

the total strain ε. The rate of strain accumulation ε̇
acc can be completely described by

the rate of the total strain ε̇acc (”intensity of accumulation”) and the ratio of the rates of

the volumetric and the deviatoric strain (”direction of accumulation, flow rule”)

Ω =
ε̇acc

v

ε̇acc
q

, ω =
εacc

v

εacc
q

(2.16)

In the case of in-phase-cycles (Section 2.4) the strain amplitude can be described by the

amplitude of the total strain εampl or by the volumetric and deviatoric components εampl
v

and εampl
q , respectively. The shear strain amplitude γampl can be used as an alternative

to εampl
q . For strain loops, which enclose some strain space (out-of-phase-cycles, e.g. due

to elliptic stress loops in the p-q-plane), a more complex amplitude definition is needed.

Such a definition is explained in Section 7.2.1.
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Figure 2.3: Evolution of total strain ε in a cyclic triaxial test

2.3 Pore volume

The magnitude of pore volume is described by the void ratio e or the porosity n. The

density index ID is calculated from the void ratios emin and emax or the dry densities %d,max

and %d,min in the densest and loosest condition of the grain skeleton (determined according

to DIN 18126) and void ratio e or dry density %d as follows:

ID =
emax − e

emax − emin

=
%d,max

%d

Dr =
%d,max

%d

%d − %d,min

%d,max − %d,min

(2.17)

The initial value of the density index at the beginning of a test is denoted by ID0. Alter-

natively, the relative density Dr is often used in the literature.

2.4 Shape of the cycles

It is distinguished between so-called in-phase (IP) and out-of-phase (OOP) - cycles. The

definitions are explained by means of the strain ε (Figure 2.4).

In the case of IP-cycles all components of ε oscillate with the same scalar, periodical

function −1 ≤ f(t) ≤ 1 in the time t (e.g. f(t) = sin(t)), i.e. ε = ε
av + ε

amplf(t). These

cycles are also addressed as ”one-dimensional”. A special case of the IP-cycles are the

uniaxial cycles (Figure 2.4a), where only one component varies with time, e.g.:

ε = ε
av +






εampl
1

0

0




 f(t) (2.18)



14 Chapter 2. Definitions

In all other cases one speaks of multiaxial IP-cycles (Figure 2.4b):

ε = ε
av +






εampl
1

εampl
3

εampl
3




 f(t) (2.19)

In the case of OOP-cycles (Figure 2.4c) the components oscillate with a phase-shift θ in

time:

ε = ε
av +






εampl
1 f(t)

εampl
3 f(t+ θ)

εampl
3 f(t+ θ)




 (2.20)

In the cyclic triaxial test with σ3 = constant uniaxial IP-stress cycles are applied, because

only the axial component σ1 varies with time. If σ3 6= constant and σ1 and σ3 oscillate

without a phase-shift multiaxial IP-stress cycles are obtained. An oscillation with a phase-

shift results in OOP-stress cycles.
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Figure 2.4: Distinction between uniaxial IP-, multiaxial IP- and OOP-cycles



Chapter 3

State of the art: element and model

tests with cyclic loading

3.1 General remarks

The behaviour of soil or foundations under cyclic loading was studied in different ways:

� element tests in the laboratory

� small-scale model tests

� model tests with increased gravitation (in particular centrifuge model tests)

� large-scale model tests

� in-situ tests and measurements at real buildings

In element tests with cyclic loading the residual and the elastic (secant stiffness of the

stress-strain-hysteresis) portions of deformation were studied. Different types of test de-

vices were used. They are illustrated in Figure 3.1:

a) triaxial test on cylindrical specimens

b) true triaxial test on cubical specimens

c) torsional shear test on hollow cylinder specimens

d) simple shear test

e) direct shear test

f) shaking table test

15
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g) resonant column test

h) measurement of wave velocities in specimens by means of piezoelectric elements

In most test devices two types of control are possible: a control of the stresses (or loads)

induced at the specimen boundaries on one hand and a control of the boundary dis-

placements on the other hand. The tests are briefly explained for a stress control in the

following.
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Figure 3.1: Types of laboratory tests for the material behaviour under cyclic loading

In most triaxial tests on cylindrical specimens (Figure 3.1a), the axial stress σ1 is cyclically

varied, whereas the lateral stress σ2 = σ3 is kept constant. Therefore, only uniaxial stress

cycles with an inclination of 1:3 in the p-q-plane are tested. Sometimes also σ3 is oscillating

(see e.g. Sections 5.2.1.3 and 5.2.1.4 of this thesis) and therefore different inclinations of

the stress cycles and elliptic cycles in the p-q-plane can be studied. The triaxial devices

used in this work are discussed in Section 4.1.1.

The stress cycles in the triaxial test on cylindrical specimens are at most two-dimensional

since in the σ1-σ2-σ3-principal stress space they lay within a plane. Three-dimensional

stress cycles can be tested in a true triaxial test (Figure 3.1b, cyclic variation of all three

principal stresses) and in the torsional shear test on hollow cylinder specimens (Figure

3.1c, cyclic variation of inner pressure σ3i, outer pressure σ3a, axial stress σ1 and torsional

moment M).

In a simple shear test (Figure 3.1d) a shear stress or a displacement is induced at the

upper boundary and the lateral boundaries are forced to a linear displacement over the
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specimen height. The lateral stresses are rarely measured. Thus, the accumulation of

stress in the horizontal direction caused by cyclic loading is not known. The problem

of the inhomogeneous stress and strain fields within a specimen in a simple shear test

is addressed in Section 4.1.2. Simple shear devices can be modified in order to allow

a circular cyclic shearing. Such a device was used within this work. It is presented in

Section 4.1.2.

In contrary to the triaxial test, a shear band in a direct shear device (Figure 3.1e) cannot

freely develop. Due to the mutual shearing of the upper and the lower half of the specimen,

its location is enforced near the middle of the specimen. The applicability of this type

of test for studies of the material behaviour under cyclic loading is limited. Direct shear

tests were used to examine changes of the granulometry in the shear band during cyclic

loading (Helm et al. [49]). This type of test was also chosen to study the contact between

soil and foundation under cyclic loading (z.B. Malkus [92]).

Shaking table tests (Bild 3.1f) are applied in ”liquefaction” studies of sand layers under

earthquake loading. At the base of the shaking table definite accelerations are induced.

In some studies several shaking tables were mounted in orthogonal directions onto each

other. In this case a multidimensional cyclic loading could be tested (Section 3.2.2.5).

Resonant Column (RC) tests (Figure 3.1g) were rarely used to study residual deformations

(e.g. for the determination of the so-called threshold shear strain, see Vucetic [174] or own

tests in [180]). Their main field of application is the determination of the secant stiffness of

the stress-strain-hysteresis. The strain amplitudes measured in the RC device are mostly

smaller than those in the cyclic triaxial tests (Figure 3.2). The system of the RC test

consists of a cylindrical specimen, the base mass and the top mass. In dependence of the

bearing of these masses the RC devices are further distinguished (e.g. type ”fixed-free” for

a fixed support at the base and a freely movable top mass). The system is dynamically

excited by a torsional moment (frequencies f > 20 Hz). The secant shear stiffness is

determined from the resonant frequency of the system. Some RC devices allow for an

excitation of the specimens in the axial direction. In that case secant Young moduli in

the axial direction can be measured. Also the material damping can be obtained from RC

tests. The RC device used in this work (type ”free-free’) is explained in detail in Section

4.1.3.

Compression or shear waves generated by piezoelectric elements propagate with strain

amplitudes < 10−6 within a soil specimen. The secant stiffness at small strains (= dynamic

stiffness) can be calculated from the wave velocities (Section 3.3). In the range of very

small strain amplitudes the measurement of wave velocities in soil specimens is thus an

alternative to RC tests. A testing device with piezoelectric elements and the measurement
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Figure 3.2: Typical ranges of shear strain amplitude γampl for different types of tests

of wave velocities are discussed in Section 4.1.4.

Beside the type of the test device and the type of control (load, displacement), the tests

can be further distinguished concerning the drainage conditions (fully drained, partly

drained, undrained) and the frequency of loading (quasi-static, dynamic). In shaking

table tests, RC tests and measurements of the wave velocities the excitation is per se

dynamic.

The following Section 3.2 gives an overview about element tests with cyclic loading in

the literature. It summarizes their essential results concerning the residual deformations

(direction and intensity of accumulation). With respect to the intensity of accumulation

the following influences or parameters are discussed:

� number of cycles

� strain or stress amplitude

� polarization (direction) of the cycles

� polarization changes

� shape of the cycles

� average stress

� void ratio / relative density

� loading frequency

� fabric of the grain skeleton / historiotropy (cyclic preloading)

� random cyclic loading / packages of cycles

� grain size distribution curve
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If possible the influencing parameters are discussed using drained tests. However, there

is much more literature on undrained tests, because a substantial research was done on

this theme in regions with a frequent occurrence of earthquakes. Furthermore, some

influencing parameters were studied solely in undrained tests. Thus, in the following also

results of undrained cyclic tests are reported.

The literature on experimental work concerning the elastic portion of strain (secant stiff-

ness of the stress-strain-loop) under cyclic loading is not less voluminous. Mostly RC tests

or measurements of wave velocities in soil specimens were performed. This thesis concen-

trates on the residual deformations. However, they cannot be discussed separately from

the elastic portion of strain. Section 3.3 therefore summarizes some fundamental depen-

dencies of the secant stiffness on several parameters. These dependencies are necessary

for the interpretation of the own test results in Chapter 5.

In the literature shallow foundations and piles under cyclic loading were tested. Section

3.4 summarizes model and in-situ tests. The derived settlement laws and engineering

models are presented. While Section 3.4.1 deals with shallow foundations, Section 3.4.2

addresses to piles.

3.2 Element tests on accumulation under cyclic load-

ing

3.2.1 Direction of accumulation

In a drained cyclic triaxial test Luong [91] observed, that it depends on the average stress if

a sand shows a contractive or dilative behaviour under cyclic loading. He applied packages

each with 20 cycles in succession at different average deviatoric stresses qav. The right

part of Figure 3.3 shows the measured q-εv-loops. Below a certain value of qav the material

behaviour was contractive while it was dilative at larger average deviatoric stresses. Luong

defined a borderline in the p-q-plane (the so-called ”characteristic threshold (CT) line”)

separating the contractive (σav below the CT-line) and the dilative (σav above the CT-

line) material behaviour. This borderline was shown to be independent of the soil density.

A second important study on the direction of accumulation was conducted by Chang &

Whitman [21]. In a series of cyclic triaxial tests on medium coarse to coarse sand the

average mean pressure pav was kept constant, while the stress ratio ηav varied from test

to test. Four tests were performed on loose and four other ones on dense samples. In

Figure 3.4a the residual volumetric strain after 100 cycles is shown as a function of the
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Figure 3.3: Contractive or dilative behaviour of sand under cyclic loading in dependence

of the average stress after Luong [91]: a) q-ε1-loops, b) q-εv-loops

0 0.5 1.0 1.5 2.0
1.0

0.5

0

-0.5

Average stress ratio � av = qav/pav [-]

V
ol

um
et

ric
 s

tr
ai

n 

� v 
   

[%
]

ac
c

dense
 sand

loose 
sand

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1.0

� acc [%]v

� ac
c  

[%
]

all tests: 
pav = 180 - 278 kPa,
n0 = 0.426 - 0.432,�
 = qampl/pav 

   = 0.16 - 0.25,
Nmax = 1,050

0.
92

0.54

0.60 0.43

0.35

� av  = 0.82

b)a)

�  = Mc( � c)

after N = 100 cycles

Figure 3.4: Studies on the direction of accumulation of Chang & Whitman [21]: a) residual

volumetric strain εacc
v as a function of the average stress ratio ηav, b) residual shear strain

γacc as a function of εacc
v for different values of ηav



3.2. Element tests on accumulation under cyclic loading 21

average stress ratio ηav = qav/pav. Independently of the density of the sand, a vanishing

accumulation rate of the volumetric strain was observed for ηav ≈ Mc(ϕc). Thus, Chang

& Whitman [21] assumed the CT-line of Luong [91] to be identical with the critical state

line. For ηav < Mc(ϕc) a compaction and for ηav > Mc(ϕc) a dilative material behaviour

was measured.

In further tests Chang & Whitman [21] observed, that the ratio γacc/εacc
v increases with

increasing values of ηav (Figure 3.4b). A good approximation of the measured direction of

accumulation by the flow rule of the modified Cam Clay model ω = (Mc
2 − (ηav)2)/(2ηav)

could be demonstrated for different sands (see the illustration in the p-q-plane in Figure

3.5a). An influence of the average mean pressure pav and the amplitude ratio ζ = qampl/pav

on the inclination of the γacc-εacc
v -paths could not be detected (Figure 3.5b). In [21] also

the influence of the number of cycles is reported to be negligible. However, Chang &

Whitman [21] tested only 1,050 cycles. It is therefore not clear if the test results can be

extrapolated to larger numbers of cycles.
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3.2.2 Intensity of accumulation

3.2.2.1 Influence of the number of cycles

Concerning the evolution of the residual strain or deformation with the number of cycles

N , it is distinguished between a stepwise failure, a shakedown and an abation (Figure 3.6).

These definitions were introduced by Goldscheider & Gudehus [34] and refer originally to

foundations subjected to cyclic loading. However, they can also be applied to element

tests. In the case of a stepwise failure (Figure 3.6a) the residual strain increases linearly

or even over-linearly with the number of cycles N . In the case of a skakedown (Figure

3.6b) the rate of residual strain vanishes completely after a few load cycles and only the

elastic strains have to be considered in the following cycles. In the case of an abation,

the rate ε̇acc = ∂εacc/∂N decreases with each cycle, but it never vanishes completely (e.g.

εacc ∼ ln(N), Figure 3.6c). Explicit accumulation models are developed for the case of an

abation. Thus the following remarks concentrate on this case.

N

u, �
a)

N

u, �
b)

ln(N)

u, �
c)

Figure 3.6: Distinction of the deformation behaviour of a foundation (displacement u)

or a soil specimen (strain ε) under cyclic loading: a) stepwise failure, b) shakedown, c)

abation [34]

In the literature, different shapes of the curves εacc(N) were reported. In drained cyclic

triaxial tests on sand Lentz & Baladi [85] observed an increase of the residual axial strain

εacc
1 proportional to the logarithm of the number of cycles N (Figure 3.7). In the tests

starting from an isotropic stress the axial stress was cyclically varied between σ1 = σ3

and σ1 = σ3 + 2σampl
1 .

Also Suiker [153] worked with stress cycles with qmin ≈ 0 and different maximum stress

ratios ηmax/Mc(ϕp) in a triaxial cell. The tests were performed on unsaturated ballast

and well-graded sand. The specimens were prepared with 95 % of the proctor density

(ID ≈ 0.85 ÷ 0.90) and with the optimum water content wPr. The drained cyclic loading

was applied with a frequency of 5 Hz. Figure 3.8 presents the increase of the deviatoric

strain with the number of cycles. In a diagram with a semi-logarithmic scale a reduction
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for a well-graded sand after Suiker [153]

of the inclination of the curves εacc
q (N) after approx. 1,000 cycles was observed (even in

the test with ηmax ≈ Mc(ϕP )). Suiker chose the denotation ”conditioning phase” for

N < 103 and ”densification phase” for N > 103. However, in a test with Nmax = 5 · 106 a

re-increase of the inclination at higher numbers of cycles was measured.
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εacc
1 (N) ∼ Nα for ballast 22.4/63 af-

ter Gotschol [35]

Helm et al. [49] studied two cohesive (silt, marl) and two non-cohesive soils (fine sand,

medium coarse sand) in drained cyclic triaxial tests. While the lateral stress σ3 was

constant, the axial stress was oscillating with an amplitude σampl
1 around the average

value σav
1 , but in contrary to Lentz & Baladi [85] and Suiker [153] the stress at minimum
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σ1 was not isotropic. The development of the axial strain with N for the medium coarse

sand is illustrated in Figure 3.9. In the diagram with semi-logarithmic scale a significant

increase of the inclination of the curves εacc
1 (N) with increasing number of cycles can

be detected. Helm et al. [49] proposed a bilinear approximation of the curves in the

semi-logarithmic scale.

Accumulation curves εacc(N) which were over-proportional to ln(N) were also measured by

Marr & Christian [94] on a poorly graded fine sand. Figure 3.10 shows the results of large-

scale cyclic triaxial tests on ballast performed by Gotschol [35]. The illustration includes

also the residual strain in the first cycle. In the εacc
1 -N -diagram with double-logarithmic

scale, one obtains straight lines. Thus, the accumulation curves can be described by

a power law εacc
1 ∼ Nα with a constant α. This approach was also frequently used in

explicit accumulation models (see Chapter 6). However, the curves of the volumetric

strain εacc
v (N) shown by Gotschol [35] contradict the cyclic flow rule reported by Luong

[91] and Chang & Whitman [21] (Section 3.2.1).

3.2.2.2 Influence of the strain or stress amplitude

In Figures 3.7 up to 3.10 an increase of the accumulation rate with the stress amplitude is

obvious. In cyclic simple shear tests, Youd [188] also detected a strong increase of the rate

of densification with increasing shear strain amplitude γampl (Figure 3.11). Amplitudes

less than a threshold shear strain γampl = 10−4 did not cause any residual strains. Silver

& Seed [151, 150] drew similar conclusions from their cyclic simple shear tests (Figure

3.12). In the diagrams in Figures 3.11 and 3.12 with semi-logarithmic (!) scale, one can

see an approximately quadratic increase of the accumulation rate with γampl.

Sawicki & Świdziński [133, 134] performed cyclic simple shear tests on a fine sand with

different amplitudes γampl. Figure 3.13a shows again, that larger amplitudes can cause

a faster densification. If εacc
v or the state variable ”compaction” Φ = ∆n/n0, defined by

Sawicki & Świdziński, is plotted versus Ñ = 1
4
N(γampl)2, the curves Φ(Ñ) fall together

into a single curve (Figure 3.13b). Sawicki & Świdziński called this curve ”common

compaction curve”. It was approximated by

Φ(Ñ) = C1 ln
(

1 + C2 Ñ
)

(3.1)

with the material constants C1 and C2. The curves Φ(Ñ) in Figure 3.13b slightly diverge.

Thus, Equation (3.1) presumably does not fit for larger numbers of cycles N > 50. This

is also demonstrated in Section 5.2.6.

In simple shear tests with large shear strain amplitudes in the first cycles exclusively

densification takes place. If a certain density is achieved at each shear stress reversal first
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after Sawicki & Świdziński [133, 134]

a contractive material behaviour followed by a dilative material behaviour is observed

(Figure 3.14, Gudehus [39] or also Pradhan et al. [121] and Triantafyllidis [162]). Thus, in

the case of shear waves the frequency of the accompanying longitudinal waves is doubled

(Gudehus et al. [40]).

In general it is debatable if quantitative conclusions can be drawn from cyclic simple shear

tests, since the strain field is inhomogeneous over the specimen volume and the lateral

stresses are usually not measured. Cyclic triaxial tests and also cyclic torsional shear

tests on hollow cylinder specimens are thought to be more meaningful and reliable. A

series of cyclic triaxial tests on the influence of the amplitude was undertaken by Marr

& Christian [94]. The average stress and the initial density were kept konstant while the
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amplitude ratio ζ = σampl
1 /pav was varied from test to test. Figure 3.15 presents curves

εacc(ζ) which were derived from the data of Marr & Christian [94]. Curves of the shape

εacc ∼ ζα with 1.9 ≤ α ≤ 2.3 could be fitted to the data for different numbers of cycles.
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3.2.2.3 Influence of the polarization of the cycles

The influence of the polarization, i.e. the direction of the cycles in the stress or strain space

was rarely studied until now. Mostly a pure deviatoric shearing in the simple shear test

or predominant deviatoric cycles in the triaxial test with σ3 = constant were investigated.

Ko & Scott [76] tested the effect of repeated cycles with hydrostatic compression on the

accumulation of strains in cubical specimens. The tests showed a small compression of the

specimens during the first cycles while no further strain accumulation could be observed

during the following cycles. However, the tests of Ko & Scott [76] were restricted to very

few cycles.

Choi & Arduino [23] performed undrained true triaxial tests on gravel (cubical specimens,

length of edge 24.1 cm). At an initial effective pressure of p0 = 138 kPa stress cycles with

different directions in the deviatoric plane were tested. No dependence of the liquefaction

resistance on the polarization of the cycles in the deviatoric plane could be detected

(Figure 3.16).
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3.2.2.4 Influence of polarization changes

Yamada & Ishihara [187] studied the influence of a change of the polarization of the stress

cycles in drained and undrained tests on loose saturated sand in true triaxial tests. After

consolidation under an isotropic stress four cycles were applied. In the first cycle, the

vertical stress was increased until a certain octahedral shear stress τoct (see definition in

Appendix II) was reached. Subsequently, it was reduced again to τoct = 0. The two

horizontal stress components were varied in such way, that the mean pressure p remained

konstant during the cycle. After that, the direction of loading was rotated by a certain

angle θ in the octahedral plane and the second cycle was applied with the same amplitude

in this new direction. The polarization of the third cycle was identical with that of the

first one, but τ ampl
oct was larger. In the fourth cycle, the specimen was sheared in the

direction of the second cycle with an amplitude τ ampl
oct being identical to that in the third

cycle.

In the drained tests Yamada & Ishihara observed, that the residual volumetric and devi-

atoric strains after the second and the fourth cycle increased with increasing angle θ, i.e.

with an increasing deflection of the shearing direction in the second and the fourth cycle

from the direction in the first and the third cycle (Figure 3.17). Similar conclusions could

be drawn concerning the build-up of excess pore pressure in the undrained tests. Yamada

& Ishihara concluded, that the material (at least partly) ”forgets” its loading history, if

the actual direction of loading deflects significantly from the previous polarization. This

lost of memory grows with increasing angle between the two subsequent polarizations.
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3.2.2.5 Influence of the shape of the cycles

Pyke et al. [122] subjected a dry sand layer (diameter d = 91.4 cm, height h = 7.6 cm)

to a multiaxial cyclic loading. Two shaking tables were used. One was mounted trans-

versely on the other one, allowing for 2-D shearing. If approximately circular stress cycles

were applied, the settlements were twice larger than for uniaxial stress cycles with the

same maximum shear stress (Figure 3.18a). Furthermore, if two stochastically generated

loadings τ1(t) and τ2(t) with τ ampl
1 ≈ τ ampl

2 were applied simultaneously, the resulting

settlement was twice larger than in the case where the sand layer was sheared only with

τ1(t) or only with τ2(t) (Figure 3.18b). Thus, concerning the accumulation rate the max-

imum values of shear stress in the directions of both axes seem to be more important

than the shape of the path between the extrema. If additionally to the horizontal loading

with τ1(t) and τ2(t) the shaking tables were accelerated in the third, vertical direction,

the accumulation rate was even larger (Figure 3.18b). The conclusion of the test results

was that if sand is cyclically sheared simultaneously in several orthogonal directions, the

resulting settlement is identical with the sum of the settlements which would result from

an uniaxial cyclic shearing in the individual directions.

Ishihara & Yamazaki [65] performed undrained simple shear tests with a stress-controlled

shearing in two mutually perpendicular directions. In a first series elliptic stress cycles

were tested. The amplitude τ ampl
1 was kept constant and the amplitude in the orthogonal

direction was varied in the range 0 ≤ τ ampl
2 ≤ τ ampl

1 (Figure 3.19a). The liquefaction

resistance decreased with an increasing ovality of the stress loops. With increasing ratio
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Figure 3.18: Shaking table tests of Pyke et al. [122]: a) Comparison of uniaxial and

circular stress cycles, b) effect of stochastically generated cycles

τ ampl
2 /τ ampl

1 , the accumulation of excess pore water pressure was accelerated and the liq-

uefaction (defined as the time at which γampl = 3 % was reached) was achieved in less

cycles (Figure 3.19a). Let us consider the amplitude ratio τ ampl
1 /σ1,0 = 0.1 (σ1,0 = effec-

tive vertical stress prior to cyclic loading). The liquefaction was reached after approx. 45

cycles of uniaxial shearing (τ ampl
2 /τ ampl

1 = 0), whereas only 8 cycles were necessary in the

case of a circular shearing (τ ampl
2 /τ ampl

1 = 1). In a second series of tests, the specimens

were sheared alternatingly in the τ1- and the τ2-direction (Figure 3.19b). A cycle was

completed when both shearing directions were passed. Also in these tests, the liquefac-

tion resistance decreased with an increasing ratio τ ampl
2 /τ ampl

1 . For an amplitude ratio

τ ampl
1 /σ1,0 = 0.1 approx. 11 cycles were necessary to reach liquefaction in the case of an

amplitude ratio τ ampl
2 /τ ampl

1 = 1. Thus, the accumulation of excess pore water pressure

was slightly slower than for circular cycles (Figure 3.19a).

3.2.2.6 Influence of the average stress

Several experimental studies with cyclic simple shear tests (Youd [188], Silver & Seed

[151, 150], Sawicki & Świdziński [133, 134]) came to the conclusion, that the axial stress

σ1 does not affect the strain accumulation. This can be also seen from Figure 3.11.

However, in the test series only few cycles with large amplitudes (γampl > 10−3) were

applied. The disadvantages of cyclic simple shear tests were already mentioned.

Timmerman & Wu [160] performed cyclic triaxial tests with ηav = qav/pav = constant.

They compared the strain accumulation for two different lateral stresses σ3 = 48 kPa and



30 Chapter 3. State of the art: element and model tests

1 10 100 1,000
0

0.1

0.2

0.3

0

0.1

0.2

0.3

τ 1   
   

/

� 1,
0 

[-
]  

Number of cycles N to γampl = 3 %

1 10 100 1,000

Number of cycles N to γampl = 3 %

am
pl

τ 1   
   

/

� 1,
0 

[-
] 

am
pl

0
0.2 - 0.4
0.4 - 0.6

0.8- 1.0

τ1     /τ2     =ampl ampl

0.6 - 0.8

0
0.2 - 0.4

0.4 - 0.6

τ1     /τ2     =ampl ampl

0.6 - 0.8

τ1     ampl

amplτ2

Dr = 0.49 - 0.59
�

1,0 = 200 kPa 
Dr = 0.50 - 0.55
�

1,0 = 200 kPa 

0.8- 1.0

τ1     ampl

amplτ2

a) b)

Figure 3.19: Influence of the shape of the stress cycles on the liquefaction resistance after
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σ3 = 138 kPa. In the tests with the smaller σ3, smaller stress amplitudes were sufficient to

cause the same residual strain after 104 cycles as in the tests with the larger σ3. However,

the pressure-dependence of stiffness was not taken into account by Timmerman & Wu.

Probably the increase of the accumulation rate with decreasing average mean pressure pav

for qampl = constant results mainly from the simultaneous increase of the strain amplitude.

Marr & Christian [94] studied different average stresses p∗av = (σav
1 + σav

3 )/2, q∗av =

(σav
1 − σav

3 )/2, η∗av = q∗av/p∗av in cyclic triaxial tests with ζ∗ = σampl
1 /p∗av = constant.

Curves of identical residual strains (ε1 = constant or εv = constant, respectively) in a

η∗av-N - or p∗av-N -diagram are presented in Figure 3.20. Marr & Christian observed a

significant increase of the accumulation rate of the axial strain with the stress ratio η∗av

(Figure 3.20a). Initially, the rate of volumetric strain (Figure 3.20c) became slower with

increasing η∗av. However, at larger stress ratios it increased again. These observations are

in contradiction with the results of Luong [91] and Chang & Whitman [21], who found

that the volumetric rate vanishes on the critical state line. The accumulation of the axial

(Figure 3.20c) and the volumetric strain (Figure 3.20d) became faster with increasing

average mean pressure. However, also Marr & Christian did not consider the increase of

the strain amplitude with pressure for ζ∗ = constant. The larger strain amplitudes εampl

(not given in [94]) at higher pressures may have caused the larger accumulation rates.

An extrapolation of the own test data (Section 5.2.4) predicts an accumulation rate ε̇acc 6=
0 for the case of zero effective average stress. σ

av = 0 occurs e.g. in an undrained cyclic

test after the liquefaction of the specimen. Shamoto et al. [147] performed such tests with

a subsequent re-consolidation of the specimens. Figure 3.21a presents the relationship

between the generated excess pore water pressure ∆u and the volumetric strain εv,RC
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during re-consolidation due to the dissipation of the pore water. A clear correlation

between εv,RC and ∆u exists for those specimens, which did not ”liquefy” during the

undrained cyclic loading (∆u/p0 < 1 with the isotropic effective consolidation pressure

p0). For the ”liquefied” specimens (∆u/pc = 1) a significant scatter of the values εv,RC

was observed (the logarithmic scale of the ordinate has to be considered). This may be

probably attributed to a different cyclic shearing at σ
av = 0. Thus, a latent accumulation

in the soil skeleton goes on, even at σ
av = 0 (Figure 3.21b). It may be explained as

a local densification which gets visible during re-consolidation. This correlates with the

practical observations, that settlements after an earthquake are often larger than it could

be expected from the generated excess pore water pressures.

3.2.2.7 Influence of void ratio / relative density

From Figure 3.12 after Silver & Seed [151, 150] it could already be seen, that the accu-

mulation rate strongly depends on the initial density. In simple shear tests with an initial

density of Dr0 = 0.45 the residual strains were twice as large as for Dr0 = 0.6 and six

times larger than for Dr = 0.8. Youd [188] observed, that cyclic loading can cause the void

ratio to fall significantly below the minimum void ratio emin from standard procedures.

For different test parameters, (σ1, γ
ampl) Youd [188] found a compaction up to ID = 1.27.
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In cyclic triaxial tests, Hain [42] studied a fine-grained dry sand with different initial

porosities n0. The axial stress was oscillating between σ1 = σ3 and σ1 = σmax
1 . For peak

stress ratios σmax
1 /σ3 ≤ 3, the curves εacc

1 (n0) for a certain number of cycles N were linear.
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For larger stress ratios at peak over-linear curves were measured (Figure 3.22). An over-

proportional increase of the residual volumetric (Figure 3.23) and axial strains with the

initial void ratio e0 was reported also by Marr & Christian [94].

3.2.2.8 Influence of the loading frequency

In the literature one may find contradictory reports on the influence of the loading fre-

quency on strain accumulation. In drained cyclic simple shear tests Youd [188] could not

detect a dependence of the accumulation rate on the frequency within the tested range

0.2 Hz ≤ fB ≤ 1.9 Hz (Figure 3.24). Shenton [149] documented results of drained cyclic

triaxial tests on ballast with loading frequencies 0.1 Hz ≤ fB ≤ 30 Hz. He also could not

find an influence of the loading frequency on the residual strains. Similar conclusions were

drawn by Kokusho et al. [77] from undrained cyclic triaxial tests. Also Sasaki & Yamada

(after Tatsuoka et al. [158]) measured the same liquefaction resistance for different loading

frequencies (fB = 0.05 Hz and fB = 0.5 Hz).
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Contrary to these results, Kempfert et al. [71] reported on a non-negligible influence of the

loading frequency on the accumulation of deformations in cyclic triaxial tests on ballast.

The deformation due to the first cycle grew with increasing loading frequency, whereas

higher frequencies fB caused a lower accumulation rate during the subsequent cycles. It

should be annotated, that at least for the higher loading frequencies fB ≥ 5 Hz identical

stress amplitudes lead to smaller strain amplitudes due to inertia forces. The decrease

of the accumulation rate in the subsequent cycles with increasing fB may possibly be
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attributed to the decrease of εampl.

3.2.2.9 Influence of the fabric of the grain skeleton and the historiotropy

The accumulation rate depends strongly on the fabric of the grain skeleton and the spatial

distribution of the contact forces. The initial fabric results from sedimentation or in the

case of laboratory specimens from the method of sample preparation (inherent anisotropy).

It is changed by monotonic and cyclic loading (induced anisotropy). The influence of the

fabric or the historiotropy (history dependence) on the accumulation rate was mainly

studied in tests without drainage.

Different preparation methods lead to different initial fabrics of the grain skeleton. If

dry sand is pluviated, oblong grains tend to lay flat, whereas a random orientation is

achieved by tamping of moist sand (Nemat-Nasser & Takahashi [100]). Several authors

have demonstrated with undrained tests that different preparation techniques lead to

different accumulation rates of excess pore pressure and thus to different liquefaction

resistances. Exemplary undrained cyclic triaxial tests on three different sands performed

by Ladd [81] are shown in Figure 3.26. Ladd observed, that specimens which were prepared

by dry pluviation and compacted by vibration liquefied at four times lower numbers of

cycles than specimens which were prepared by moist tamping. Similar test results were

obtained by Mulilis et al. [98, 99]. Porcino et al. [117] reported that pluviation through

air leads to a significantly lower liquefaction resistance than pluviation through water.

Oda et al. [116] pointed out the significance of the direction of deposition compared to

the polarization of cyclic loading. Specimens which were cyclically loaded perpendicular

to the direction of deposition exhibited a higher liquefaction resistance than those loaded

parallelly. Many authors found the sensitivity to liquefy of high-quality, undisturbed

specimens to be significantly lower than the one of re-constituted specimens, irrespectively

of the method of preparation (Mulilis et al. [98, 99], Tokimatsu & Hosaka [161], Hatanaka

et al. [46], Porcino et al. [117]). This can probably be attributed to the historiotropy of

the in-situ soil or to aging effects (see Section 3.2.2.11).

Several publications (Finn et al. [31], Seed et al. [144], Seed et al. [146], Teachavoransin-

skun et al. [159], Ishihara & Okada [63, 64], Suzuki & Toki [154]) deal with the influence

of a cyclic history on the liquefaction resistance. The results of these test series were

summarized by Wichtmann et al. [178]. The tests of Seed et al. [144] are discussed here

as an example. Seed et al. [144] performed shaking table tests on fully water-saturated

sand under undrained simple shear conditions. Packages with a small number of cycles N

(smaller than N causing liquefaction) were applied in succession to the saturated sand,

each simulating an earthquake of low intensity. After each package the drainage was
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opened and the sand layer was re-consolidated. Figure 3.27 shows that the pore water

pressure rise became slower with each succeeding package, i.e. with increasing cyclic

preloading.
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3.2.2.10 Random cyclic loading and packages of cycles

In many practical problems (traffic loads, wind, waves), the amplitude is not constant

but varies from cycle to cycle. In the field of fatigue of metals under cyclic loading the

Miner’s rule [96] is used in order to consider varying amplitudes. If Nfi is the number of

cycles which is necessary to cause failure with a constant amplitude σi, a failure during

cyclic loading with varying amplitudes can be expected if

n∑

i=1

Ni

Nfi

= 1 (3.2)

holds, wherein Ni is the number of cycles applied with the amplitude σi. Accordingly, the

sequence of the packages of cycles does not play a role concerning the time of failure.

Also the stress amplitudes during an earthquake vary strongly with time. Random cyclic

loading histories were tested e.g. by Ishihara & Yasuda [66] and Tatsuoka et al. [158]. In

order to estimate the risk of liquefaction, an irregular loading is replaced by an equivalent

number of regular cycles with a constant amplitude (Seed et al. [142, 141]). In this context
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”equivalent” means that the irregular and the regular cyclic loading cause the same build-

up of excess pore water pressure. The constant amplitude of the regular cycles is chosen

as a certain fraction (mostly 65 %) of the maximum amplitude of the irregular cycles.

Packages of cycles (so-called ”multistage cyclic loading”) were studied on a calcareous

sand in drained triaxial tests by Kaggwa et al. [69]. At a constant average stress (pav =

266.7 kPa, qav = 200 kPa), three packages, each with 50 cycles, were applied in succession.

The amplitudes qampl = 100, 150 and 200 kPa were tested in different sequences. The

residual shear and volumetric strains are illustrated in Figure 3.28. While the course of

the curves with N depends on the sequence of the packages, the sequence hardly influences

the residual strains at the end of the third package. The concept of an equivalent number

of cycles proposed by Kaggwa et al. [69] is able to describe the development of the residual

strains under packages of cycles (see the solid curves in Figure 3.28 and also Chapter 6).
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3.2.2.11 Aging effects

The term ”aging” describes a change of the mechanical properties of a soil with time t

under constant external stress. An increase of stiffness and shear strength with t was

reported. Aging effects result e.g. from cementation of the grain contacts or an im-

provement of their micro- or macro-interlocking due to very small relative movements. A

detailed study on the cause of aging effects (which could also not answer all questions)

was undertaken by Baxter [8]. Aging effects also lead to a reduction of the accumulation

rate under cyclic loading. Figure 3.29 presents undrained laboratory tests of Seed [139].

The specimens were cyclically loaded directly after preparation or after a certain period
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(1 day ≤ t ≤ 100 days) under constant stresses. The liquefaction resistance of a speci-

men which stood 100 days under constant stresses was 25 % higher than the respective

value of a freshly pluviated sample. Seed [139] extrapolated his test results to larger

periods t and could therewith explain the higher liquefaction resistances in situ compared

to re-constituted laboratory specimens of the same material (Figure 3.29).
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3.2.2.12 Influence of the grain size distribution curve

Up to the present the influence of the grain size distribution curve of non-cohesive soils on

the accumulation rate was rarely studied in drained cyclic tests. Helm et al. [49] observed

smaller residual deformations in tests on a fine sand (d50 = 0.13 mm, U = d60/d10 =

1.75) compared to a medium coarse sand (d50 = 0.31 mm, U = 2.12). This was explained

with the larger non-uniformity index U and the larger maximum grain size of the medium

coarse sand. From the results of undrained cyclic tests, Castro & Poulos [17] concluded

that the influence of the grain size distribution curve on the liquefaction resistance is as

high as the effect of the initial density. Contrary to Helm et al. [49] a faster build-up of

excess pore water pressures was observed for soils with a smaller d10. Similar conclusions

were drawn by Lee & Fitton [84].

Chien et al. [22] (see Figure 3.30) and Kokusho et al. [77] reported a reduction of the
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liquefaction resistance with an increasing content of fines. Elsewhere (Wong et al. [185],

Evans & Zhou [30]) one may read, that in undrained tests the accumulation of pore water

pressure is slower for gravel or gravelly sand in comparison to sand. Apart from the

observations of Helm et al. [49], the test results documented in the literature support an

increase of the accumulation rate with decreasing grain size.

3.3 Element tests on the secant stiffness of the stress-

strain-hysteresis

Most experimental studies on the secant stiffness of the stress-strain-hysteresis under

cyclic loading were performed by means of RC tests. Thus, they examine the dependence

of the secant shear modulus Ghyst on several influencing parameters.
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Figure 3.31: a) τ -γ-hysteresis and definition of secant shear stiffness Ghyst, b) Decrease of

Ghyst with shear strain amplitude γampl

A schematic illustration of a shear stress-shear strain-hysteresis during a cycle is given

in Figure 3.31a. Usually the loop is (in contrary to Figure 3.31a, see e.g. Figure 1.4)

not perfectly closed. A residual strain or change of stress remains in the material. If one

follows the curve of first loading τ(γ), starting from (τ, γ) = (0, 0), the shear stiffness G

declines with increasing shear strain γ. Due to the increased shear stiffness directly after

a reversal of the strain path and the subsequent decrease of G during continued shearing

the loading and the unloading branch of the hysteresis loop differ. Thus, the hysteresis

encloses some area in the τ -γ-plane. The secant shear modulus Ghyst = τ ampl/γampl

corresponds to the inclination of a straight line in the τ -γ-diagram through both extreme
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points of the hysteresis. Below a certain shear strain amplitude (for sand usually below

γampl = 10−5) the secant shear modulus Ghyst = Ghyst,0 is not influenced by the shear

strain amplitude. This maximum value of the secant shear modulus is identical with

the stiffness at the beginning of the curve of first loading. It is also identical with the

stiffness directly after a reversal of the strain path. In specialized literature Ghyst,0 is also

addressed as ”dynamic shear modulus” Gdyn, Gmax or G0. For γampl > 10−5, the secant

shear modulus Ghyst decreases with γampl (Figure 3.31b). In the τ -γ-plane the hysteresis

thus lays more flat with increasing shear strain amplitude (compare hystereses 1 and 2

in Figure 3.31a with γampl
2 > γampl

1 ). The maximum of the hysteresis follows the so-called

”backbone” curve τ(γ).

The curves Ghyst(γ
ampl) can be approximated e.g. by a formula of Hardin [44]:

Ghyst = Ghyst,0
1

1 + γampl/γr
(3.3)

Therein the void ratio and pressure-dependence of the curves Ghyst(γ
ampl) is taken into

account by the reference shear strain γr, which can be calculated from the failure shear

stress with τ = τmax:

γr =
τmax

Ghyst,0
τmax =

√

[(1 +K0)/2 σ1 sinϕ+ c cosϕ]2 − [(1 −K0)/2 σ1]
2 (3.4)

with the effective vertical stress σ1, the earth pressure coefficient at rest K0 and the

effective shear strength parameters c (cohesion) and ϕ (friction angle). Own experiments

[180] confirmed a good approximation of the test data from RC tests by the equations

(3.3) and (3.4).

The maximum value Ghyst,0 depends mainly on mean pressure p and void ratio e. Figure

3.32 presents the results of the pioneer work of Hardin & Richart [45]. The shear wave

velocity plotted on the ordinate is correlated with the secant shear stiffness at small

strains via vS =
√
Ghyst,0/%. Ghyst,0 decreases with increasing void ratio and increases

accordingly to Ghyst,0 ∼ pn with the mean pressure. In general the exponent n is reported

between 0.4 and 0.5. However, Iwasaki & Tatsuoka [68] observed an increase of n with

the shear strain amplitude. This question is further discussed on the basis of the own

tests in Section 5.2.4.1.

For an estimation of Ghyst,0 a formula of Hardin [45, 43] is often used:

Ghyst,0[MPa] = A
(a− e)2

1 + e
(p[kPa])n (3.5)

with A = 6.9, a = 2.17 and n = 0.5 for round grains and A = 3.23, a = 2.97 and n = 0.5

for angular grains. For cohesive soils, Equation (3.5) is extended by the influence of the
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overconsolidation ratio [1]. Equation (3.5) can be made free of dimensions, if the factor

(pa)
1−n with the atmospheric pressure pa = 100 kPa is supplemented [43]. In this case, the

constant A has to be re-defined. Other authors (e.g. Roesler [130], Bellotti et al. [9]) do

not introduce the mean pressure p but the individual stress components into the formula

of Ghyst,0:

Ghyst,0 ∼ pa
1−n−m σa

n σp
m (3.6)

Equations of type (3.6) were mostly developed on the basis of measurements of the shear

wave velocity in cylindrical or cubical specimens. In Equation (3.6), σa and σp are the

stress components in the direction of shear wave propagation or in the direction of particle

movement (polarization), respectively. In the axially symmetric RC test σa = σ1 and

σp = σ3 holds. The stress component perpendicular to the plane of wave propagation

does not influence Ghyst,0 (Bellotti et al. [9]). While Roesler [130] determined significantly

different values n = 0.30 and m = 0.21, in later publications (e.g. Bellotti et al. [9], see a

summary in Yu & Richart [189]) n ≈ m was reported.

An increase of the anisotropy of stress leads to a reduction of Ghyst,0. This was shown

by Yu & Richart [189]. They performed tests, where starting from σ1/σ3 = 1 the stress

ratio was changed. In Figure 3.33 the shear moduli measured by Yu & Richart [189] at

σ1/σ3 6= 1 are divided by the values of the corresponding isotropic stress with the same

mean pressure p = (σ1 + 2σ3)/3. The decrease of Ghyst,0 with σ1/σ3 is almost linear. For

σ1/σ3 = 2 the secant shear modulus takes 95 % of the corresponding value at an isotropic
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In partly saturated soils, the capillary pressure causes an increase of the effective stress

and thus an increase of the shear stiffness compared to dry or fully saturated soils (Wu

et al. [186], Quian et al. [123]). Under constant stresses, Ghyst,0 increases approximately

logarithmically with time (aging, see Afifi & Woods [3], Afifi & Richart [2], Baxter [8]

and own experiments in [180]). In geological old deposits, the wave velocities can be

significantly higher than in laboratory tests on disturbed specimens. Also the grain size

distribution curve influences Ghyst,0. Iwasaki & Tatsuoka [67] reported a strong reduction

of the secant shear stiffness with an increasing content of fines and an increasing uniformity

index U = d60/d10 (Figure 3.34b). For poorly graded sands, Ghyst,0 is approximately

independent of the mean grain diameter d50 and the grain shape (Figure 3.34a, the latter

one contradicts Hardin [45]). The influence of the fabric of the grain skeleton or the

historiotropy (cyclic preloading) has been discussed controversially in the literature. A

detailed survey is given in Section 9.1.1.

The remarks on Ghyst made above mostly refer to RC tests or measurements of the shear

wave velocity with the direction of propagation along the vertical axis and a polarization

in the horizontal direction (wave type vS,vh). In the analysis of cyclic triaxial tests, also

the secant Young modulus Ehyst = σampl
1 /εampl

1 is used. Due to pluviation laboratory

specimens are transversally isotropic, i.e. they exhibit the same wave velocities in the

two horizontal directions but show different wave velocities in the vertical (xv) and the

horizontal (xh) direction. In that case four independent wave velocities (compression (P-)
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Figure 3.35: Wave velocities in a transversally isotropic material

waves vP v, vP h, shear (S-) waves vSvh = vShv, vShh, see Figure 3.35) can be measured (e.g.

Bellotti et al. [9], Kuwano et al. [80]). Knowing the soil density %, the secant stiffnesses

at small strains can be calculated from the corresponding wave velocities:

Es,hyst,0 = % (vP )2 and Ghyst,0 = % (vS)2 (3.7)

(Es,hyst,0: secant stiffness for constrained lateral strains). Finally, it should be mentioned,

that the area enclosed by the stress-strain-hysteresis (Figure 3.31a) is a measure of the

energy dissipated during a cycle. While the secant shear modulus decreases with the shear

strain amplitude γampl, the material damping increases.

3.4 Model tests, settlement laws and so-called engi-

neering models

3.4.1 Shallow foundations

3.4.1.1 1g - model tests and settlement laws

Holzlöhner [56] performed 1g-model tests on circular foundations (diameter 17.8 cm ≤ d ≤
71.4 cm) on a poorly-graded gravelly sand (average, static load F av, load amplitude F ampl,

loading frequency 9 Hz ≤ fB ≤ 56 Hz). The tests were conducted both in the laboratory

and in situ. The soil was deposited in layers and densified to the required initial density

(outdoor a vibrator on the soil surface was used). Thus, the soil experienced a cyclic

preloading. Figure 3.36 shows the observed linear settlement curves s(N) in a semi-

logarithmic scale. In [56] a description of the curves by

s(N) = A ln (N/Na + 1) (3.8)
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with a factor A and a so-called preloading number Na was proposed. The residual set-

tlement increased with the square of F ampl/F av (see also Figure 3.36) and grew with

increasing average load F av as well as with decreasing soil density. The influence of the

loading frequency was small. Holzlöhner [56] reported, that even in the case of large

settlements no densification was observed below the base of the foundation (predominant

shear deformations). The soil surface settled only in a small zone around the foundation.

For an application in practice, Holzlöhner suggested to perform a model test in situ and

to transfer the measured settlement to the prototype.
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Hettler [52, 53, 54] tested circular foundations (radius r = 5 cm, embedding t = 0) on a

dense medium-coarse sand. The axial load was varied within a cycle between the minimum

load Fmin = G = 0 and the maximum load Fmax = G + P = P . Figure 3.37 shows the

settlement curves during 800 cycles for different amplitudes. In the case of the top curve

the maximum load Fmax corresponds to a fraction of 75 % of the static bearing capacity,

for the lowest curve it is 17 % of the bearing capacity. In a diagram with a double-

logarithmic scale, Hettler obtained approximately parallel curves. He developed a model

law based on the dimensional analysis and a similarity theory. His formula delivers the

settlement s(N) of a foundation after N load cycles and considers also the case G 6= 0:

s(N) = s1

[

1 + f(N)

(
P

G+ P

)α]

with s1 = s(N = 1) = f

(
P

γ b3
,
a

b
,Dr

)

(3.9)

The settlement s1 after the first cycle depends on the load, the foundation geometry (side

lengths a× b or radius r), the weight γ of the soil and its relative density. The function
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f(N) = CN ln(N) is independent of the load and the soil density, but depends on the

geometry of the foundation. For the tested foundations CN = 0.55 was determined. In

Equation (3.9), α is another constant. Equation (3.9) with the function f(N) proposed

by Hettler reproduces the parallelism of the curves s(N) in the double-logarithmic scale.

However, the over-logarithmic course of the settlement curves is not described. The

influence of the stress level can be considered by an additional factor [55, 54]. By means

of Equation (3.9), Hettler [53] was also able to predict the settlements in a model test

with railroad ties under cyclic loading. A major disadvantage of equations of type (3.9)

is the extrapolation of the settlement in the subsequent cycles from the settlement in the

first cycle. This is further discussed in Section 6.1.4 in connection with the accumulation

model of Gotschol [35, 36].

Raymond & El Komos [126] performed 1g-model tests on strip foundations (width 7.5 cm

≤ b ≤ 22.8 cm). Figure 3.38 presents typical settlement curves s(N) for Fmin = 0 and

different ratios Fmax/FBC (FBC: static bearing capacity). The curves are similar to those

of Hettler (if the latter ones are illustrated with a semi-logarithmic scale). In [126] they

are approximated by

s(N) =
A

1/ log(N) −B
with A,B = f(Fmax, FBC, b) (3.10)

For an identical soil pressure σ = F/b, smaller residual settlements were measured with

increasing width of the foundation (the settlements at b = 22.8 cm were only half of the

settlements at b = 7.4 cm). However, this contradicts observations for monotonic loading

(Burland et al. [15], Holzlöhner [57]).

100 101 102 103 104 105
0

5

10

15

20

25

30

S
et

tle
m

en
t s

 [m
m

]

Number of cycles N [-]

Fmax / FBC =
0.90

0.75

0.60

0.50
0.40

0.33

0.27

0.135

1g - model test
strip foundation

t

F
Fmax

Fmin = 0

s

b = 7.5 cm

F

Figure 3.38: 1g-model tests on strip foundations after Raymond & El Komos [126]: Set-

tlement curves s(N) for different load amplitudes



3.4. Model tests, settlement laws and engineering models 45

3.4.1.2 ng - model tests and settlement laws

The own element tests (Section 5.2.4) show, that the accumulation in the soil strongly

depends on stress. Therefore, the results of centrifuge model tests, i.e. tests with an

increased gravitation, should be closer to reality than small-scale 1g-model tests. Laue

[82] performed centrifuge model tests (acceleration level 30 g) on circular foundations

(diameter in the prototype d = 1.68 m) on a dense fine sand. The average stress σav,

the stress amplitude σampl and the depth of embedding t were varied. An increase of the

settlement of the foundation proportional to the logarithm of the number of cycles was

measured (Bild 3.39a). A lift-up of the soil surface beneath the foundation was observed.

Laue [82] proposed a settlement formula, which in contrary to Equation (3.9), decouples

the settlements in the first (s1) and in the subsequent cycles:

s(N) = s1 +B ln(N) with B = f(t, ID,
σampl

σav
,
σav

σBC
) (3.11)

The factor B increased with the amplitude σampl and with the average load for σampl/σav

= constant (Figure 3.39b). It decreased with the depth of embedding. For an application

in-situ, Laue [82] recommended to determine B from observations at similar buildings,

from test loadings or centrifuge model tests.
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Helm et al. [49] presented a centrifuge model test (acceleration level 30 g), which is re-

calculated in Section 8.2.1. In this test a strip foundation (width in the prototype b =
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1.0 m, Figure 3.40a) was placed without embedding on a freshly pluviated dense fine

sand (ID ≈ 0.9) and loaded with N = 105 cycles. Within a cycle, the loading varied

with an amplitude σampl = 75.1 kPa around the average value σav = 88.7 kPa (Figure

3.40a, loading frequency 0.44 Hz in the prototype, static bearing capacity σBC = 345

kPa). Figure 3.40b shows the load-settlement loops for selected numbers of cycles N .

With an amplitude of settlement sampl ≈ 0.8 mm the residual settlement after 105 cycles

was s(N = 105) = 7.3 cm (including the settlement resulting from the static load and the

first cycle). Figure 3.40c presents photos of the marked sand with the strip foundation

for N = 0 and N = 70, 000. Both, a slight tilting of the foundation and a bulging of the

soil surface beneath the foundation, was observed. Below the foundation, the soil was

compacted.
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3.4.1.3 So-called engineering models based on laboratory tests

Beside the settlement laws mentioned above so-called engineering models based on labo-

ratory tests were proposed in order to predict the settlements of foundations under cyclic

loading.

Mallwitz & Holzlöhner [93] described a procedure to estimate the accumulation of set-

tlements with cyclic oedometric tests. An oedometric compaction of the soil below the

foundation up to a depth z = 2b (b = width of foundation) is assumed. For different

depths z ≤ 2b, the static vertical stress σav
1 (z) and the amplitude σampl

1 (z) (resulting from

traffic loads) are determined. With these input parameters, cyclic oedometric tests are

performed in order to obtain curves εacc
1 (N, z) of the residual vertical strain with the
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number of cycles. The settlement of the foundation after N cycles is estimated from an

integration of the strains measured in the laboratory over the depth up to z = 2b. A

similar method using cyclic triaxial tests was described by Diyaljee & Raymond [26].

Sawicki et al. [135] also assume an oedometric compaction of a limited zone below the

foundation. The vertical compression of this zone is determined by means of the so-called

common compaction curve (Sections 3.2.2.2 and 6.1.1), integrating the residual volumetric

strains over the compaction zone. With this method 1g-model tests could be described

satisfactorily.

3.4.2 Pile foundations

3.4.2.1 Small-scale 1g-model tests

Chan & Hanna [20] performed 1g-model tests on aluminium piles (d = 1.9 cm, l = 57

cm) in a medium dense or dense, medium-coarse sand. Prior to cyclic loading the piles

were pressed into the dry sand. A pressure of 100 kPa was applied to the soil surface in

order to simulate a certain soil depth. In a first series of tests, piles were subjected to

a compressive-to-zero repeated loading. At a minimum load of Fmin = 0, the maximum

load Fmax was varied between 10 and 50 % of the static ultimate load in compression

Ql,c. The settlement curves are presented in Figure 3.41a. After a time period with small

settlements, which increased with decreasing amplitude, the residual displacements grew

over-linearly with N . For larger numbers of cycles Chan & Hanna [20] reported on a

re-decrease of the settlement rate. This can also be observed in Figure 3.41a from the

settlement curve of the test with Fmax = 0.15 Ql,c.

In a second series of tests a compressive-to-tensile (alternating) cyclic loading was per-

formed (Figure 3.41b). The maximum load in compression was kept constant at 15 %

of the static ultimate load Ql,c, while the minimum load in tension was varied between

0 and 30 % of the ultimate load in tension Ql,t. At the beginning of each test, settle-

ments of the piles which developed faster with increasing tensile load, were observed. For

Fmin = 0.2Ql,t and Fmin = 0.3Ql,t, a sudden pull-out of the piles after initial settlements

was obtained. This may be attributed to the decrease of the normal stress onto the pile

shaft due to the densification of the soil and the accompanying reduction of the maximum

shear stresses which can be carried by the shaft.

Hettler [54, 52] described 1g-model tests on piles, which were subjected to axial tensile

loads. For P/(γl3) ≥ 0.0059 (P : double amplitude of tensile load, l: depth of embedding),

a step-wise failure occured, i.e. a linear or over-linear increase of the pile lift-up u with
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Figure 3.41: Cyclic 1g-model tests on piles with a) compressive-to-zero cyclic loading and

b) compressive-to-tensile cyclic loading after Chan & Hanna [20]

N (Figure 3.42a) took place. Finally, the pile was pulled out of the soil. Piles which were

loaded with amplitudes below the critical value P/(γl3) = 0.0059 exhibited an abation,

i.e. an under-linear curve u(N) (Figure 3.42a). Similar curves u(N) for tensile-to-zero

cyclic loading were measured by Chan & Hanna [20].
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Figure 3.42b illustrates 1g-model tests of Hettler [54, 52], where piles (l = 18.5 cm, d/l

= 0.14) were subjected to a horizontal cyclic loading. For different loads, an increase

of the horizontal displacement of the pile top proportional to ln(N) was measured. The
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model law given in Equation (3.9) can be also used for the horizontally loaded pile, if the

horizontal displacement u replaces the settlement s. For the tests in Figure 3.42b CN =

0.2 was determined.

The development of the shaft friction and the tip resistance under cyclic loading was

studied by Le Kouby et al. [83]. Model piles (d = 2 cm, l = 50 cm) were tested in a

medium dense sand. The tests were performed in a calibration chamber with specified

vertical and horizontal stresses. For a model pile which was pressed into the soil, a

decrease of the shaft friction (mean value over 20 cm shaft length) and an increase of

the tip resistance with N was measured (Figure 3.43a). In contrary to this, if the sand

was pluviated around the pile, an increase of the skin friction and a decrease of the tip

resistance occured.
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et al. [83] on model piles, which were embedded into the soil by different methods

3.4.2.2 Large-scale 1g-model tests and in-situ tests

Gruber et al. [37] and Schwarz [138] tested grouted piles (diameter approx. 13 cm, length

approx. 5 m) under cyclic axial loading. A silty fine to medium coarse sand was filled
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into a testing pit layer by layer. A vibrator was used to densify the soil to Dr = 0.42.

The piles were installed under in-situ conditions and afterwards subjected to compres-

sive or to compressive-to-tensile cyclic loading. The settlement curves of two tests with

compressive-to-tensile cyclic loading are shown in Figure 3.44a. In both tests the perma-

nent axial displacements remained relatively small up to N = 104, while the amplitudes

of displacement slightly increased with N . Between N = 104 and N = 105 in both tests

a sudden increase of the displacement amplitude occurred. Both, the lift-up under min-

imum load and the pull-down under maximum load, increased. The tests were stopped

when a lift-up of 10 mm was reached. Thus, the failure of the piles under compressive-to-

tensile cyclic loading occurs suddenly and without noticeable warning. This was already

demonstrated by the small-scale tests of Chan & Hanna [20] (Figure 3.41). In the case of

a compressive cyclic loading (Figure 3.44b) an increase of the pile settlement proportional

to ln(N) was measured up to N = 104. For larger numbers of cycles an over-logarithmic

accumulation was observed.
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Schwarz [138] reported that a failure of the piles was commenced much faster, when the

sand was flooded. Thus, the capillarity of the moist sand significantly reduces the accu-

mulation of deformation and delays a failure. Figure 3.45 (after Schwarz [138]) illustrates

the development of the shear stress, which is transmitted into the soil over the shaft of the

grouted piles. While the shear stresses in the upper part of the pile decreased with the

number of cycles N , an increase could be observed for larger depths. Gruber et al. [37]

also presented an in-situ cyclic loading of a drilled pile. However, the loading scheme

was complex and only approx. 100 cycles were tested. Trofimenkov & Mariupolskii [168]
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reported on in-situ-tests on screwed piles. Recent test series on a monopile (horizontal

cyclic loading of a steel pipe, Savidis et al. [132]) are still at the beginning.

0 40 80 120 160 200
5

4

3

2

1

0

N = 
 39
 550
 11,075
 18,730
 23,050

D
ep

th
 z

 [m
]

Skin friction [kPa]

SG1

Strain gage (SG) 2

SG3

SG4

SG5

Fmin = -120 kN (tension),
Fmax = 150 kN (compression)

Figure 3.45: Development of skin friction

with the number of cycles in a test of Gru-

ber et al. [37], after Schwarz [138]

100 101 102 103 104 105
0

5

10

15

20

25

30

S
et

tle
m

en
t [

cm
]

Number of cycles N [-]

t

F
0.5 Ql,c

0.1 Ql,c

0.1 Ql,t

0.35 Ql,t

F
min  = 0.1 Q l,c

0
0.1 Q l,t

0.
35

 Q
l,t

F

s

Figure 3.46: Settlement of a pile in sand

under axial cyclic loading, centrifuge model

tests of Staupe [152]

3.4.2.3 Centrifuge model tests

Staupe [152] performed centrifuge model tests (acceleration 30 g). Aluminium piles (di-

ameter d = 0.45 m, depth of embedding t = 4.65 m in the prototype, surface pasted up

with sand) in a dense fine sand (ID > 0.9) were subjected to an axial cyclic loading. The

axial load was oscillating with a loading frequency (prototype) of 0.33 or 0.033 Hz, respec-

tively, between Fmax = 0.5Ql,c and different minimum loads (0.35Ql,t ≤ Fmin ≤ 0.1Ql,c),

i.e. both, compressive and compressive-to-tensile cyclic loading, were tested. The axial

displacement of the pile with N is presented in Figure 3.46. For the chosen loads always

settlements were obtained. The increase of the settlements with increasing number of

cycles was over-logarithmic. With increasing amplitude the settlement rate increased.

3.4.2.4 Engineering models

Models for the description of pile displacements were developed amongst others by Poulos

[118, 119, 120] and Sawicki & Swinianski [156]. However, the model of Poulos is mainly

based on theoretical considerations and many assumptions. The method of Sawicki &

Swinianski uses an accumulation model with several disadvantages (Section 6). A detailed

description is set aside here.



Chapter 4

Own experimental studies

4.1 Testing devices and specimen preparation

In the studies on the influence of several parameters on the accumulation rate under cyclic

loading, several cyclic triaxial devices were used as well as a novel multidimensional sim-

ple shear device. In the experiments on the correlation of the historiotropy with dynamic

soil properties (Section 9.1), a resonant column device and a triaxial cell with piezoelec-

tric elements were employed. Beside the construction of the test devices, the specimen

preparation method and the measurement technique are presented in the following.

4.1.1 Triaxial devices

Two types of triaxial cells (in the following addressed as type I and type II), which differ

concerning their construction, were applied. Four triaxial cells of type I and one of type

II were available.

The principal construction of the triaxial cells of type I is illustrated in the scheme in

Figure 4.1. The photo in Figure 4.2 shows this type of triaxial cell in a pneumatic loading

frame. A special feature of these cells is the location of the load cell for the measurement

of the axial load. This load cell is placed under the specimen base plate in a free space

sealed against the cell water. The axial load acting onto the base plate is conducted into

the load cell via a rod, which is rigidly connected to the base plate and runs into a ball

bearing. Thus, the axial load is measured directly at the base of the specimen and a

falsification due to friction at the sealing of the load piston is prevented. Moreover, a

low-friction sealing ring is used at the lead-through of the load piston. The load piston,

which is guided by a ball bearing, and the specimen top cap are rigidly connected in

52
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Figure 4.1: Scheme of the triaxial cell of type I

order to prevent tilting. The top plate of the triaxial cell consists of two parts, the inner

plate (with the ball bearing of the load piston) and an outer ring, which serves for fixing

the plexiglas cylinder. This allows specimen preparation, in particular the placement of

the specimen top cap onto the soil surface and the measurement of the geometry of the

specimen, before the plexiglas cylinder is mounted.
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Figure 4.2: Photo of the triaxial cell of type I in a pneumatic loading frame
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Figure 4.3: Scheme of the triaxial cell of type II

The triaxial cell of type II (Figure 4.3a) differs from type I concerning the arrangement of

the load cells (one below and one above the specimen). Also the mounting of the plexiglas

cylinder is different (Figure 4.3a). The additional equipment of this triaxial cell for the

measurement of wave velocities is explained in Section 4.1.4.

For the purpose of specimen preparation (specimen diameter d = 10 cm, height h = 20

cm), the specimen end plates were lubricated with a thin film of grease and a thin latex

membrane was applied. This lubrication reduces the friction at the end plates and sup-

ports the generation of a homogeneous stress field in the specimen. In the analysis of the

tests, the measured axial strain amplitude εampl
1 was corrected by the elastic deformation

of the membranes at the end plates. This so-called ”bedding error” was determined in

a preliminary test on a steel dummy. After the lubrication of the end plates the latex

membrane of the specimen (thickness tM = 0.4 mm) was pulled over the specimen base

plate and sealed with O-rings (Figure 4.4b). The mounting of the split moulds (Figure

4.4c) followed and the membrane was sucked to the moulds by means of vacuum. The

dry sand was pluviated out of a funnel into the moulds (Figure 4.4d). The funnel was

continuously lifted up in order to keep the distance between the outlet of the funnel and

the sand surface in the mould constant. Different soil densities were achieved by choosing

different fall heights and diameters of the funnel. After having flattened the soil surface

(Figure 4.4e), the load piston with the specimen top cap was placed and the membrane

was sealed to this top cap with O-rings. The specimen was stabilized by a vacuum of

50 kPa. Afterwards the moulds could be removed (Figure 4.4f). The geometry of the

specimen was measured, the plexiglas cylinder was mounted and the cell was filled with
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water. An air cushion remained in the upper part of the pressure cell. The cell pressure

was applied on this air cushion. The vacuum in the specimen was gradually replaced by

the cell pressure keeping the effective stress constant.

a) b) c)

d)

e) f)

Figure 4.4: Preparation of a specimen for a triaxial test: a) specimen base plate before

lubrication, b) pulling over and sealing of the membrane, c) mounting of the split moulds,

d) pluviation of the sand out of a funnel, e) flattened soil surface, f) specimen under

vacuum after the removal of the moulds

Most tests were performed on fully water-saturated specimens. They were first flushed

with carbon dioxide (CO2) and afterwards saturated with de-aired water. The drainage

was connected to one pipe of the volume measuring unit (see Figures 4.1 and 4.2). A back

pressure of usually 200 kPa was applied via this pipe. The cell pressure was kept always

higher than the back pressure. After a period of approximately one day, the saturation of

the specimen was checked by means of the B-value of Skempton (criterium for a sufficient

saturation: B ≥ 0.95). The isotropic effective stress was re-increased to p = 50 kPa. It

was assumed that the procedure of saturation causes no deformation of the specimen (a

measurement of all deformations during saturation was not possible). Thus, the geometry

of the specimen after saturation and at p = 50 kPa was assumed to be identical with the

geometry measured in the dry condition under a vacuum of 50 kPa.

Starting from this small effective isotropic stress, the average stress σ
av of the individual

test was applied. First, the cell pressure was increased and afterwards the axial load was

increased (triaxial compression) or reduced (triaxial extension). The deformations of the
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specimen during the application of σ
av were measured. After a consolidation period of

approx. 1 h the average stress was superposed by stress cycles.

For the application of the axial load four pneumatic loading systems (Figure 4.2) and one

freely programmable load press were available. In one device also the cell pressure σ3

could be varied cyclically by means of a pneumatic valve.

Due to the large deformations, the first cycle was applied with a low frequency fB =

0.01 Hz. This way an unintentional build-up of excess pore water pressure and a possible

liquefaction of the specimens due to a too fast loading was prevented. The subsequent

mostly 105 load cycles were applied with a frequency of 1 Hz. In the tests with triaxial

extension and in the tests with a cyclic variation of the lateral stress σ3 smaller frequencies

(0.1 Hz or 0.05 Hz, respectively) were chosen, due to technical reasons (adapter for tension

loads or application of σ3 via the air cushion in the upper part of the pressure cell,

respectively). In these tests only 104 cycles were tested.

The axial deformations of the specimens were measured by means of a displacement trans-

ducer which was attached to the load piston outside the pressure cell. The volume changes

of fully water-saturated specimens were determined via the squeezed out or absorbed pore

water. For this purpose a differential pressure transducer was employed (see Figures 4.1

and 4.2, in Figure 4.3a the volume measuring unit is not illustrated). In the triaxial cell

of type II the lateral deformations of dry specimens were determined by means of six

non-contact displacement transducers. Flat aluminium targets were glued onto the mem-

brane and the transducers were placed with a certain distance in front of these targets. A

carriage system allowed the adjustment of this distance in the case of large deformations

of the specimens. A possible arrangement of the transducers is shown in Figure 4.3b.

Studies of Niemunis [105] with the PIV-(Particle Image Velocimetry) method (Raffel et

al. [124]) revealed, that the strain field within a triaxial specimen under monotonic and

cyclic loading is inhomogeneous. These inhomogeneities in the field of the amplitude and

in the field of the accumulation rate remain even after a large number of load cycles.

Although there may be a loose zone at the top of the specimen stemming from the prepa-

ration procedure, the axial strain measured at the whole specimen is thought to be more

representative than the local measurement between two points with a short distance (see

the possible measurement by means of angular targets in the triaxial cell of type II, Figure

4.3c). The measurement technique was completed by pressure transducers for the control

of cell and back pressure.

During cyclic loading, the signals of all transducers were recorded by means of a data ac-

quisition system. In order to reduce the amount of data, five complete cycles were sampled

in certain intervals. The distance between these recordings was increased proportional to
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ln(N).

In anticipation of the test results presented in Chapter 5, the good reproducibility of

the tests should be mentioned. This is supported by the results of four identical tests

which are illustrated in Figure 4.5. Figure 4.5a shows the coincident accumulation curves

εacc(N), while the εacc
q -εacc

v -strain paths, which were only slightly different, are presented

in Figure 4.5b.
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Figure 4.5: Reproducibility of the cyclic triaxial tests: a) accumulation curves εacc(N),

b) εacc
q -εacc

v -strain paths (direction of accumulation)

4.1.2 Multidimensional simple shear device (CMDSS device)

In order to compare the accumulation rates due to a circular and a uniaxial cyclic shearing

and in order to study polarization changes, i.e. changes of the direction of the cycles

in the stress or strain space, a simple shear device was developed. It is called Cyclic

MultiDimensional Simple Shear (CMDSS) device or colloquial ”hula-hoop”-device. A

scheme and a photo of this testing apparatus can be found in Figure 4.6.

The test device is a modified NGI-type (Kjellman [74], Bjerrum & Landva [10]) simple

shear device. The specimen base plate is guided by ball bearings in such way, that

only horizontal movements in both directions x1 and x2 are allowed and vertical ones

are prevented. The cyclic movement of the specimen base plate is caused by an electric

motor which rotates an eccentric. The eccentric runs in a cut-out of a plate, which is

rigidly screwed to the specimen base plate. Different displacement paths in the x1-x2-

plane (uniaxial and circular cycles, different amplitudes, see a sequence of deformations
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in Figure 4.7a) can be tested by using different eccentrics and cut-outs. The specimen

top cap is movable only in the vertical direction, since it is guided by three ball bearings.

aluminium rings

guidance rods

soil specimen

drainage

ball bearing
(hor. guidance)

ball bearing
(vert. guidance)

eccentric

electric motor

F
displ. transducer

displ. transducer



Figure 4.6: Scheme and photo of the CMDSS device

A lateral deformation of the specimen (diameter d = 10 cm, height h = 20 cm) is prevented

by means of 200 aluminium rings each of 1 mm thickness, which surround the specimen

over the complete height. Sand and aluminium rings are separated by a latex membrane.

The aluminum rings are guided by eight vertical rods. The rods are extendable and

connected to the specimen end plates with ball joints. In this way a displacement of the

lateral boundaries of the specimen, which decreases linearly with the specimen height, is

achieved.

In the tests presented in Chapter 5, the axial stress σ1 was applied by placing weights

on the upper specimen end plate. Thus, the tests were performed at relatively small

stresses. Since the lateral strain is prevented, a kind ofK0-initial stress state develops. The

specimens were prepared by pluviating dry sand out of a funnel. During the procedure of

pluviation the split moulds enclose both, the latex membrane and the 200 aluminium rings.

The specimens were also tested under dry conditions. All CMDSS tests were performed

with a loading frequency of fB = 0.5 Hz. The axial deformation was measured with a

displacement transducer. Since no lateral deformations are possible εacc = εacc
v holds.

The horizontal movement of the specimen base plate was controlled by two displacement

transducers mounted orthogonally to each other. The signals of all transducers were

recorded with a data acquisition system.

A major disadvantage of all simple shear devices is the inhomogeneous distribution of

strain over the specimen volume (although the displacements of the boundaries increase
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Figure 4.7: a) Sequence of deformations during a circular cyclic shearing, b) Field of εacc in

a CMDSS specimen in a test without aluminium rings (PIV-analysis), c) Distribution of shear

strains in a corresponding FE calculation (2-D) with a hypoplastic material

linearly with height, see also Budhu [13, 14]). The inhomogeneities within a specimen in

the CMDSS device were studied with a PIV analysis and in FE calculations. Deviating

from the usual test procedure, the aluminium rings had to be removed for the PIV analysis.

The specimen was stabilized by a vacuum of 15 kPa. The membrane was provided with

colour springes. Before and after the application of 1,000 circular strain cycles a photo

of the specimen was taken. From a comparison of the photos, i.e. the change of the

location of the colour springes, the strain field in the specimen could be obtained. From

Figure 4.7b it can be seen, that this field is very inhomogeneous. The accumulated strain

concentrates at the ends of the specimen. The strain amplitudes seem to be larger at

the ends of the specimen than in its middle. Thus, the middle of the specimen performs

a rigid rotation. The corresponding FE calculation of a monotonic uniaxial shearing of

the specimen using a hypoplastic material (Figure 4.7c) also exhibited an inhomogeneous

strain field and a concentration of the shear strains at the ends of the specimen. The

shear strains in the middle of the specimen were less than those at the ends, but they

were not as small as it could be expected from the PIV analysis.

In further FE calculations the aluminium rings and thus the linear displacement of the

boundary over the specimen height were modelled. Also the friction between the mem-

brane and the aluminium rings was considered (a coefficient of friction µ = 0.5 was

assumed, Figure 4.8a). It was expected that this friction leads to a more homogeneous

strain field, but also to a reduction of the settlements of the specimen. Figures 4.8b and

4.8c present calculations with shear strains γ = 10−3 and γ = 10−2. These shear strains

represent the limits of the amplitudes tested. The strain field at γ = 10−3 is more ho-

mogeneous than in the case of the calculation without the aluminium rings (Figure 4.7c).

With increasing shear strain γ, the inhomogeneity increases (compare Figures 4.8b and
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Figure 4.8: FE calculations (2-D) of the CMDSS test with the aluminium rings and a hypoplas-

tic material

4.8c) and a localization occurs (Figure 4.8c).

In contrary to the triaxial test, due to the inhomogeneous strain field the simple shear test

cannot be seen as an element test. The test results are of a qualitative nature. However,

the influence of the shape of the strain loop and the effect of polarization changes can be

demonstrated clearly by means of this test device.

4.1.3 Resonant column (RC) device

The used RC device (Figure 4.9) is of the ”free - free” type, i.e. both the top and

the base mass are freely rotatable. The cuboidal top mass (so-called excitation head) is

equipped with two electrodynamic exciters each of them accelerating a small mass. This

acceleration is measured with an acceleration transducer. Thus, the driving force F (t) in

the axis of the electrodynamic exciter can be determined. The pair of driving forces results

in a torsional moment acting on the top of the cylindrical specimen. Other acceleration

transducers measure the acceleration of the excitation head. From an integration the

twist φ(t) of the specimen at its top can be calculated. The system composed of the

base mass, the specimen and the top mass is enclosed in a pressure cell which can sustain

cell pressures σ3 up to 800 kPa. The state of stress is almost isotropic. A small stress

anisotropy results from the weight of the top mass (m ≈ 9 kg), i.e. the vertical stress σ1

is slightly higher than the lateral one σ3. However, for larger cell pressures this anisotropy

is of secondary importance.

A sinusoidal electrical signal is generated by a function generator, amplified and applied

to the electrodynamic exciters. The frequency of excitation is varied until the resonant
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Figure 4.9: Resonant Column tests: a) scheme of the test device, b) photo of the test

device, c) apparatus for placing the specimen top cap

frequency fR of the system composed of the two end masses and the specimen has been

found. By definition, this is the case when φ(t) and F (t) have a phase-shift of π/2 in

time t. If the displacement u(t) in the axis of the electrodynamic exciter is plotted versus

F (t), one obtains an ellipsoidal Lissajous figure. In the resonant case its axes are parallel

to the u- and F -axes. The secant shear modulus

Ghyst =

(
2π h fR

a

)2

% (4.1)

is calculated from the resonant frequency with the height h and the density % of the

specimen. The parameter a is obtained from the implicit eigenvalue equation (4.2):

a tan (a) − J2

J0 JL

tan (a)

a
=

J

J0

+
J

JL

(4.2)

In Equation (4.2) J , J0 and JL are the polar mass moments of inertia of the specimen,

the base mass and the top mass, respectively (Figure 4.9a). For cylindrical specimens

(diameter d) J = 1/32 π % h d4 holds. The shear strain amplitude γampl is calculated as a

geometrical mean value over the specimen volume (see Wichtmann et al. [179]). Different

shear strain amplitudes can be tested by varying the amplitude of the excitation signal.

The damping ratio D is determined as the ratio of the energy WD, which is dissipated

within a cycle, and the elastic energy We:

D =
1

4π

WD

We
(4.3)

The dissipated energy WD is obtained from the area of the Lissajous figure. The elastic

energy is calculated from (V : specimen volume):

We =
1

2
Ghyst (γampl)2 V (4.4)
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The specimens were prepared outside the RC device using the pluviation technique (see

Section 4.1.1). The specimen top cap was placed onto the soil surface using a special

apparatus (Figure 4.9c) in order to prevent excentricity and tilting. While a vacuum

was applied to the grain skeleton the split moulds were removed and the specimens were

placed into the RC device. The specimen base plate was screwed to the rotatable base

mass of the RC device. The excitation head was placed onto the specimen top plate and

screwed. Having mounted the pressure cell, the vacuum in the specimen was gradually

replaced by the cell pressure keeping the effective stress constant.

Specimens with a full and such with a hollow cylinder cross section were tested. The

specimens with a full cross section measured d = 10 cm in diameter and h = 20 cm or

30 cm in height. Preliminary tests showed that the specimen height has no influence on

the measured stiffness for 20 cm ≤ h ≤ 30 cm, whereas in the case of the specimens

with h = 10 cm only 95 % of the value of the higher specimens was obtained. The

hollow cylinder specimens (see also Figure 4.9c) had an outer diameter da = 10 cm,

an inner diameter di = 6 cm (i.e. a wall thickness of 2 cm) and a height h = 10 cm.

The advantage of the hollow cylinder specimens compared to the full cylinder ones is

the more homogeneous distribution of shear strain over their cross section. However, a

comparison of the measurements performed on hollow and full cylinder specimens revealed

no significant differences in the dynamic soil properties. Thus, the laborious preparation

of hollow cylinder specimens (with inner and outer split moulds and inner and outer

membranes) seems not to be worthwhile for this purpose.

4.1.4 Measurement of wave propagation with piezoelectric ele-

ments

A scheme of the used triaxial cell (type II) was already shown in Figure 4.3. The specimen

end plates at the bottom and the top are equipped each with three piezoelectric elements

(Figure 4.10). These elements deform, when an electrical voltage is applied. Vice versa

they generate an electrical signal when they are deformed mechanically. The compression

element (CE) deforms in the direction of its thickness. It is used for measuring the

compressional wave velocity (P-wave type vPv referring to Figure 3.35). The shear plate

(SP) performs shear deformations and sends out shear waves (S-wave type vSvh referring

to Figure 3.35) into the soil. The shear wave velocity can also be determined from a

measurement with the bender elements BE. While CE and SP are fully integrated into

the specimen end plates, BE extents approx. 3 mm into the specimen.

The arrangement of the measuring instruments is given in Figure 4.11. A single sinusoidal
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Figure 4.10: Photo of the specimen end
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Figure 4.11: Scheme of the arrangement of

the devices for the measurement of wave

propagation velocities in triaxial specimens

electrical impulse is generated by a function generator, amplified and applied to one of

the piezoelectric elements in the specimen base plate. The deformation of the element

leads to the generation of a wave. The wave propagates in the axial direction of the soil

specimen. If the wave reaches the corresponding piezoelectric element in the specimen

top plate, the deformation of this element causes the generation of an electrical signal.

This signal is amplified and displayed at an oscilloscope. The running time tt of the wave

in the specimen is determined from the transmitted and the received signal (Figure 4.12).

In some cases this is difficult, among other things due to reflections of the wave at the

specimen boundaries (Sanchez-Salinero et al. [131], Viggiani & Atkinson [171], Brignoli et

al. [12], Arulnathan et al. [5]). The running time can be determined from a comparison of

the starting points (points A-A’ in Figure 4.12), a comparison of corresponding minima,

maxima and zero-crossings (points B-B’,C-C’,D-D’ in Figure 4.12) or by means of a cross

correlation. The tests in Section 9.1.2.4 were analyzed by comparing the starting points.

In either case delay times of the signal in cables or electrical devices have to be determined

in a calibration and subtracted from the measured running time. The wave velocity is

calculated from

v = lt/tt. (4.5)

In the case of CE and SP lt is the specimen height. For BE, the distance between the tips

of the elements is set into approach (see Viggiani & Atkinson [171], Brignoli et al. [12],

Dyvik & Madshus [29]). Using Equation (3.7) the corresponding secant stiffnesses Ghyst,0

and Es,hyst,0 at small strains can be determined from the wave velocities.

The frequency of the transmitted impulse was chosen in the range 10 kHz ≤ fTRM ≤ 100

kHz depending on the piezoelectric element and the soil stiffness. Since in this range of
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frequencies hardly any dispersion (i.e. a dependence of the wave velocity on the frequency)

is present (Triantafyllidis et al. [167]), the frequency can be selected in such way that the

received signal is clear and well interpretable with respect to the wave arrival.

The good congruence of the shear moduli Ghyst,0 from RC tests and from measurements

of wave propagation velocities in the triaxial cell is shown in Figure 4.13. In Figure 4.13

an illustration similar to Figure 3.32 was chosen.
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4.2 Tested material

The tests in this work were performed with a quartz sand with subangular grains. In all

tests, except those on the influence of the grain size distribution curve (Section 5.2.9),

the grain size distribution curve No. 3 with respect to Figure 4.14 was used, a uniform

medium coarse to coarse sand. The characteristics of the grain size distributions (mean

grain diameter d50, non-uniformity index U = d60/d10, curvature index C = d30
2/(d60 d10),

the maximum (emax) and minimum (emin) void ratios referring to German standard code

DIN 18126, the critical friction angle ϕc (mean value of 10 cone pluviation tests) and

photos of the grain size distributions are given in Figure 4.15.
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Figure 4.15: Mean grain diameter d50, non-uniformity index U = d60/d10, maximum

(emax) and minimum (emin) void ratios, critical friction angle ϕc and photos of the tested
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4.3 Material behaviour under monotonic loading

Preliminary to the cyclic tests drained monotonic triaxial tests and tests with oedometric

compression were performed on grain size distribution curve No. 3. These tests served for

a determination of the peak friction angle ϕP (ID) and the constants of the hypoplastic

constitutive model (Section 7.3.1.3). For a better interpretation of the undrained cyclic
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tests presented in Section 9.2 (correlation of the historiotropy with the liquefaction re-

sistance), undrained monotonic tests were performed in order to determine the lines of

phase transformation and failure. The test results are discussed in the following.

4.3.1 Peak friction angle from drained triaxial tests

In order to determine the peak friction angle in dependence on the relative density, drained

monotonic triaxial tests with three different initial densities (0.18 ≤ ID0 ≤ 0.26, 0.59 ≤
ID0 ≤ 0.67 and 0.95 ≤ ID0 ≤ 1.02) were performed. The specimens were compressed in

the axial direction with a constant displacement rate ṡ = 0.1 mm/min. For each density,

tests with effective lateral stresses 50 kPa ≤ σ3 ≤ 200 kPa were performed. Volume

changes were measured via the pore water of the saturated specimens.

Figure 4.16 presents the course of the deviatoric stress q and the volumetric strain εv

with increasing axial strain ε1 in the tests on initial medium dense specimens. Certainly

qmax increased with increasing lateral stress σ3. For the six tested lateral stresses, the

maximum value of q was reached at strains 6% ≤ ε1 ≤ 8% (Figure 4.16a). Afterwards

the deviatoric stress declined, but the residual value was not reached at the maximum

tested axial strain of approx. 23 %. The curves εv(ε1) (Figure 4.16b) show the initial

contractancy followed by a distinct dilatancy. The dilatant phase for the higher lateral

stresses (e.g. σ3 = 200 kPa) started later than for the smaller pressures (e.g. σ3 = 50

kPa).
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Figure 4.16: a) Deviatoric stress q and b) volumetric strain εv as a function of axial strain

ε1 for 0.59 ≤ ID0 ≤ 0.67 and different lateral stresses σ3
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Figure 4.17 compares the curves q(ε1) and εv(ε1) for the three tested initial densities and

σ3 = 200 kPa. As is known, qmax increases with increasing initial density (Figure 4.17a),

but after having reached qmax, the curves q(ε1) converge to the same residual value. The

initial phase of contractancy becomes shorter with increasing initial density.

0 5 10 15 20 25
0

200

400

600

800

1000

Axial strain ε1 [%]

q 
=

 σ
1-

 σ
3 

[k
P

a] ID0 = 0.97

ID0 = 0.62

ID0 = 0.24

all tests:
σ3 = 200 kPa

-6

-4

-2

0

2

0 5 10 15 20 25

Axial strain ε1 [%]

V
ol

um
et

ric
 s

tr
ai

n 
ε v

 [%
]

ID0 = 0.24

ID0 = 0.62

ID0 = 0.97

all tests:
σ3 = 200 kPa

a) b)

Figure 4.17: a) Deviatoric stress q and b) volumetric strain εv as a function of axial strain

ε1 for σ3 = 200 kPa and different initial densities ID0

Figure 4.18a shows the peak stresses (pmax, qmax) of all tests in a p-q-diagram. The incli-

nations Mc(ϕP ) of the failure lines which are given in Figure 4.18a result from the fitting

of a linear function through the origin (cohesion c = 0). From Equation (2.8) the peak

friction angle ϕP was calculated. In Figures 4.18b and 4.18c it is illustrated as a function

of the density index ID,P at peak and the void ratio eP at peak. For the given sand the

relationships ϕP (ID,P ) and ϕP (eP ) can be expressed by

ϕP (ID,P ) = 31.2◦ exp
(
0.40 ID,P

1.41
)

or ϕP (eP ) = 31.2◦ exp
[
2.22 (0.874 − eP )1.41

]
(4.6)

For the loosest possible density (ID = 0) thus ϕP = ϕc = 31.2◦ holds.

4.3.2 Oedometric compression

The tests with oedometric compression served primarily for the determination of the

hypoplastic material constants (Section 7.3.1.3). Three specimens with a loose initial

density (0.02 ≤ ID0 ≤ 0.03, preparated by pluviation of a cone and removal of its tip) and

three initially dense specimens (0.88 ≤ ID0 ≤ 0.90) were tested. Since the reproducibility

in tests with small specimens (diameter d = 7.0 cm, height h = 1.9 cm) of the medium
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coarse to coarse sand was not satisfactory, the tests were performed on larger specimens

(d = 28 cm, h = 8 cm). A detailed description of the respective test device is given in

[182]. The reduction of void ratio e with mean pressure p is illustrated in Figure 4.19. In

the analysis the mean pressure p = (σ1 + 2σ3)/3 was calculated with a lateral pressure

coefficient of K0 = 1 − sin(ϕP ). The peak friction angle was determined from Equation

(4.6).
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The curves in Figure 4.19 can be described by the equation of Bauer [7]:

e

e0
= exp

[

−
(

3p

hs

)n]

(4.7)

For the initially loose specimens a curve-fitting (solid lines in Figure 4.19a) resulted into

e0 = 0.869, hs = 591 MPa and n = 0.50.

4.3.3 Undrained monotonic triaxial tests

Preliminary to the undrained cyclic triaxial tests for the correlation between the histo-

riotropy and the liquefaction resistance, eight undrained monotonic triaxial tests (com-

pression and extension) were performed in order to determine the so-called phase trans-

formation line (PT) and the so-called failure line (FL). The specimens were consolidated

under four different isotropic effective stresses 50 kPa ≤ p0
′ ≤ 200 kPa. Having closed the

drainage system they were compressed in the axial direction with a displacement rate ṡ

= 0.1 mm/min. The curves q(ε1) and the effective stress paths in the p′-q-plane with the

inclinations Mc and Me of PT and FL are presented in Figure 4.20. Deviating from the

notation used so far, the effective stresses in Figure 4.20 and also in the following Section

4.4 are denoted by t′.
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4.4 Membrane penetration due to a variation of the

effective lateral stress

In the cyclic triaxial tests which are presented in Sections 5.2.1.3 and 5.2.1.4, the axial

stress σ1 and the lateral stress σ3 were oscillating simultaneously. The volumetric strain

was measured via the pore water. However, if in a triaxial test the lateral effective stress

σ′
3 is varied, the total volumetric strain εv,T measured via the pore water is composed of

both a portion εv,S resulting from the deformation of the soil skeleton and a portion εv,MP

originating from membrane penetration:

εv,T = εv,S + εv,MP = εv,S + δVMP
AM

V0
(4.8)

AM is the area of the membrane which is in contact with the specimen, V0 is the initial

volume of the specimen and δVMP is the membrane penetration per unit area. The portion

of membrane penetration results from the fact that due to an increase of the effective

lateral stress, the membrane is pressed into the voids between the grains (Figure 4.21).

While the residual volumetric strain εacc
v is not afffected by membrane penetration, the

amplitude of volumetric strain εampl
v has to be corrected by this effect.

σ3'

membrane

Figure 4.21: Problem of membrane pene-

tration: Pressing of the membrane into the

voids between the grains due to an increase

of the effective lateral stress σ′
3
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Figure 4.22: Factor S in Equation (4.9) in

dependence on the grain diameter d20 after

Nicholson et al. [103]

The membrane penetration δVMP, due to an increase of the effective lateral stress from

σ′A
3 to σ′B

3 , can be determined from the empirical equation (Nicholson et al. [103])

δVMP = S log(σ′B
3 /σ

′A
3 ) (4.9)
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In the literature, several proposals concerning the determination of the factor S can be

found. These methods are based on modified standard laboratory tests or special testing

devices (Newland & Allely [101, 102], Frydman et al. [32], Raju & Sadasivian [125],

Kiekbusch & Schuppener [73], Vaid [169], Kramer [79], Lo et al. [89], Seed et al. [145]).

Nicholson et al. [103] provide a survey and a critical discussion of the proposed methods.

They favour the isotropic compression of specimens with different ratios of the membrane

areaAM and the initial specimen volume V0. The ratioAM/V0 can be varied e.g. by testing

specimens with a full cross section and different specimen diameters or hollow cylinder

specimens with different inner diameters. Also dummies within a specimen were used in

order to reduce the volume of the grain skeleton. Referring to Nicholson et al. [103], the

amount of membrane penetration primarily depends on the grain size distribution curve.

A minor influence of the void ratio, the grain shape, the fabric of the grain skeleton and

the thickness tM and the stiffness of the membrane (if ”usual” measures of tM are applied)

was reported. On the basis of many laboratory tests (Figure 4.22), Nicholson et al. [103]

proposed the following correlation between S and the grain diameter d20:

S = 0.0019 + 0.0095 d20 − 0.0000157 (d20)
2 (4.10)

with S in the unit [cm3/cm2] and d20 in [mm]. For the medium coarse to coarse sand used

in the own tests (grain size distribution curve No. 3 referring to Figure 4.14) with d20 =

0.4 mm Equation (4.10) delivers a value S = 0.0057 cm3/cm2.

In the framework of this thesis the constant S was determined from tests with an isotropic

compression of cylindrical specimens with different diameters d. Specimens with the

diameters d = 10 cm, 7 cm and 3.5 cm were tested. For each diameter the ratio h/d =

2 was studied. Because of AM/V0 = (πdh)/(πd2h/4) = 4/d, the specimen height h

should not influence the membrane penetration. In order to control this, a ratio h/d = 1

was tested for the largest and the smallest diameter under consideration. Schemes and

photos of the tested specimen geometries are shown in Figure 4.23. The thickness of the

membrane tM = 0.4 mm was identical to the one in the tests presented in Sections 5.2.1.3

and 5.2.1.4. The isotropic compression was conducted in the triaxial cell of type II (Figure

4.3). Having placed the specimen top cap onto the soil surface, the load piston could be

removed. At a back pressure of u = 200 kPa, the effective stress was isotropically increased

from p′ = σ′
3 = 50 kPa to p′ = σ′

3 = 600 kPa. The volume changes were measured via the

pore water of the fully water-saturated specimens. An initial density of ID0 ≈ 0.6 was

intended since similar densities were studied in the tests reported in Sections 5.2.1.3 and

5.2.1.4.

The increase of the total volumetric strain εv,T with the effective pressure is presented in

Figure 4.24a. With increasing ratio AM/V0 also εv,T increases, due to a larger volumetric
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strain εv,MP resulting from membrane penetration. However, the larger volumetric strains

for h/d = 1 in comparison with h/d = 2 were not expected. This observation can only be

explained by differences during specimen preparation or inhomogeneities of the specimen

(larger influence of the ends of the specimens for smaller heights).

In Figure 4.24b, εv,T is plotted versus AM/V0 for different effective pressures. Only the

tests with h/d = 2 were used in Figure 4.24b. For a certain σ ′
3, the total volumetric strain

εv,T increases with AM/V0. Referring to Equation (4.8), the volumetric strain for the

fictitious ratio AM/V0 = 0 conforms to the volumetric strain of the grain skeleton εv,S.

The inclination of the linear curves εv,T (AM/V0) is δVMP. It was assumed, that the curves

εv,T (AM/V0) can be extrapolated linearly to AM/V0 = 0. The values of δVMP given in

Figure 4.24b were plotted versus σ′
3 in Figure 4.24c. Due to the slightly over-logarithmic

course of the curves δVMP(σ′
3), Equation (4.9) was fitted only to the range 100 kPa ≤ σ ′

3 ≤
300 kPa since these stresses were decisive for this work. A value S = 0.0090 cm3/cm2 was

obtained.

This value is larger than S = 0.0057 cm3/cm2 determined from Equation (4.10). This

can also be seen from the comparison with the measured data of Nicholson et al. [103]

in Figure 4.24d (enlarged part of Figure 4.22). However, from the strain loops resulting

from isotropic stress cycles on the p-axis (Wichtmann et al. [176]), a smaller value of

S than that from Equation (4.10) could be expected. Thus, at the time this thesis is

under preparation, the precise value of membrane penetration S is not clear. Further

tests are planned for the future. In Sections 5.2.1.3 and 5.2.1.4 the value of S resulting

from Equation (4.10) was set into approach.



Chapter 5

Influences on the accumulation rate

In Section 5.1 the results of the performed tests are first discussed exclusively with respect

to the direction of accumulation ε̇acc
v /ε̇acc

q . Afterwards Section 5.2 deals with the intensity

of accumulation ε̇acc.

5.1 Direction of accumulation (flow rule)

The test results presented in the following sections demonstrate that the direction of

accumulation is governed mainly by the average stress ratio ηav = qav/pav. A slight

change of the direction of accumulation with the number of cycles N was observed. The

average mean pressure pav, the strain loop (span, shape, polarization), the void ratio,

the loading frequency, the static preloading and the grain size distribution curve do not

influence the ratio ε̇acc
v /ε̇acc

q .

5.1.1 Influence of the average stress

Tests were performed with in-phase stress cycles (σ3 = constant) at different average

stresses σ
av. The average mean pressure (50 kPa ≤ pav ≤ 300 kPa) and the average stress

ratio −0.88 ≤ ηav ≤ 1.375 were varied. The considered average stresses cover the case of

triaxial compression (ηav > 0) as well as triaxial extension (ηav < 0). In Figure 5.1 they

are illustrated in the p-q-plane. The specimens were prepared with similar initial densities

(0.57 ≤ ID0 ≤ 0.69). In the tests with ηav > 0 amplitude ratios ζ = qampl/pav = 0.3 were

applied. In the tests with triaxial extension a smaller ratio ζ = 0.2 was chosen, due to the

smaller distance of σ
av to the yield surface. For this reason in the tests with ηav = -0.75

and ηav = -0.88 even amplitude ratios of ζ = 0.1 and ζ = 0.05, respectively, were chosen.

74
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Figure 5.1: Tested average stresses

First the tests with pav = 200 kPa are analysed. In Figure 5.2 for selected average stress

ratios ηav, the residual deviatoric strain εacc
q is plotted versus the accumulated volumetric

strain εacc
v . The strain in the first cycle is excluded from Figure 5.2 and all other figures of

Section 5.1. The data points in Figure 5.2 correspond to the numbers of cycles N = 2, 5,

10, 20, 50, 100, ......, 5 · 104 and 105. From Figure 5.2 it is apparent that the direction of

accumulation significantly depends on the average stress ratio ηav. At an isotropic average

stress (ηav = 0), a pure volumetric accumulation (compaction) takes place while the rate of

deviatoric strain vanishes (ε̇acc
q = 0). With increasing absolute value of the average stress

ratio |ηav| = |qav/pav| the deviatoric component of the direction of accumulation increases

in comparison to the volumetric portion. At an average stress on the critical state line

(ηav = Mc(ϕc) = 1.25 or ηav = Me(ϕc) = −0.88, respectively), only the deviatoric strain

accumulates and a vanishing rate of volumetric strain (ε̇acc
v = 0) could be observed (at least

during the first cycles). The latter conclusion holds although the material is not in the

critical density. While average stress ratios Me(ϕc) < ηav < Mc(ϕc) lead to a densification

of the sand, a dilative behaviour was observed in the overcritical regime (see e.g. the test
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with ηav = 1.375). The measured dependence of the direction of accumulation on ηav

agrees well with the results of the experiments of Luong [91] and Chang & Whitman [21]

(Section 3.2).
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Figure 5.2: εacc
q -εacc

v -strain paths for pav = 200 kPa and different average stress ratios

−0.88 ≤ ηav ≤ 1.375

Also conforming with the test results of Chang & Whitman [21] (Figure 3.5b), the average

mean pressure pav does not influence the direction of accumulation. This is demonstrated

in Figure 5.3 for the tests with ηav = 0.75 (triaxial compression) and in Figure 5.4 for

ηav = -0.5 (triaxial extension). The strain paths in the εacc
q -εacc

v -diagram coincide for the

tests with different average mean pressures pav (Figures 5.3a and 5.4a).

From the illustration of the strain ratio ω = εacc
v /εacc

q as a function of pav for different

numbers of cycles N (Figures 5.3b and 5.4b), the increase of the volumetric rate compared

to the deviatoric rate with N is apparent. In Figure 5.2 this rotation of the direction of
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accumulation is also noticeable, e.g. for the test with ηav = Mc(ϕc) = 1.25 as an increasing

deflection of the strain path from the vertical.

It is unlikely that the cause of the rotation of the direction of accumulation lies in the

measurement technique (e.g. resulting from the measurement of volume changes via

the pore water). The same results were obtained on dry specimens (determination of

lateral strains from local measurements with non-contact displacement transducers) and

independently of the loading frequency, i.e. the duration of a test. An increase of the

water level in the measurement pipe due to a densification of the specimen leads to an
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increase of the back pressure in the specimen and thus to a reduction of the axial and the

lateral effective stresses, i.e. a reduction of pav at qav = constant. However, this cannot

be made responsible for the experimental observations since it leads to an increase of the

stress ratio ηav which should cause a decrease of ω with N . Anyway, in the test with

ηav = Mc(ϕc) = 1.25, the accumulation of volumetric strain is small and the water level

in the measurement pipe rarely changes its height.

Figure 5.5 presents the measured directions of accumulation for all tested average stresses

σ
av as unit vectors in the p-q-plane. The origin of each vector lies in (pav,qav) of the

corresponding test. Figure 5.5a was generated using the strain accumulated up to a certain

number of cycles N . Thus, the inclination of the vectors to the p-axis is 1/ω = εacc
q /εacc

v .

In Figure 5.5b, the directions of accumulation were calculated from the rates, i.e. the

vectors are inclined by 1/Ω = ε̇acc
q /ε̇acc

v . The rates were calculated from ε̇acc ≈ ∆εacc/∆N

with ∆εacc being the differential strain accumulated between two subsequent (distance

∆N) data recordings. The vectors in Figure 5.5 are shown for different numbers of cycles

which is indicated by the different grayscales. The rotation of the vectors towards the

positive p- or εacc
v -axis with increasing number of cycles is even more pronounced in the

illustration with rates (Figure 5.5b) than in the plot of the total strains (Figure 5.5a).

Let us consider the mathematical description of the direction of accumulation. Chang

& Whitman [21] reported, that the flow rule of the modified Cam Clay model, i.e. a

model for monotonic loading, approximates the cyclic flow rule in a good manner (Figure

3.5). In the following this is proven for the tests with pav = 200 kPa. Figure 5.6a shows

the ratio of the residual strains ω = εacc
v /εacc

q as a function of ηav for the tests with

ηav > 0 (triaxial compression). For stress ratios ηav near zero, the cyclic flow rule can

be better illustrated in a diagram with the reciprocal value 1/ω on the ordinate (Figure

5.6b). Figures 5.6c and 5.6d analogously present diagrams for the ratio of the rates

Ω = ε̇acc
v /ε̇acc

q or its reciprocal value 1/Ω, respectively. The scatter of data is larger in

the diagrams plotted with rates. Figure 5.6 confirms that the deviatoric portion of the

accumulation rate vanishes at ηav = 0, while the volumetric portion vanishes at the critical

stress ratio ηav = Mc(ϕc) (at least for small numbers of cycles N ≤ 100). Beside the

measured directions of accumulation also the flow rules of the modified Cam clay and the

hypoplastic model are drawn into Figure 5.6. Both flow rules approximate the direction

of accumulation under cyclic loading well. For small stress ratios, the congruence of the

monotonic and the cyclic flow rule is best for N > 104. For stress ratios ηav = Mc(ϕc), the

direction of accumulation is better approximated for N ≤ 100 than for higher numbers of

cycles.

The latter is due to a shift of the limit ηav(ε̇acc
v = 0) to larger stress ratios with increasing

number of cycles. Simultaneously, the volumetric portion of the direction of accumulation
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Figure 5.5: Direction of accumulation for different average stresses σ
av, shown as a unit

vector in the p-q-plane, a) determined from the total strain accumulated up to a certain

number of cycles N , b) determined from the strain increments between two data recordings

increases for stress ratios ηav < Mc(ϕc). The evolution of the limit ηav(ε̇acc
v = 0) is probably

related to a hardening of the material under cyclic loading. Also a change of the grain size

distribution curve due to abrasion and an accompanying increase of the critical friction

angle ϕc may be responsible. Due to the shift of the limit ηav(ε̇acc
v = 0), smaller stress

ratios ηav approach the limit of pure volumetric accumulation ηav(ε̇acc
q = 0) = 0 for σ

av =

constant. The volumetric portion of the direction of accumulation increases therefore.

Analogously to Figure 5.6, Figure 5.7 contains diagrams for the tests with pav = 200 kPa

and ηav < 0 (triaxial extension). From Figure 5.7 it can also be seen that the deviatoric

portion of the direction of accumulation takes the value zero at ηav = 0 and that the

volumetric rate vanishes at ηav = Me(ϕc). For triaxial extension the volumetric portion
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kPa and triaxial compression: a) strain ratio ω = εacc
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q , b) reciprocal value 1/ω, c)

strain ratio Ω = ε̇acc
v /ε̇acc

q , d) reciprocal value 1/Ω

of the accumulation rate also increases with N and the flow rules of the modified Cam

Clay model and the hypoplastic model deliver a good description of the experiments.

It is thus justified to use one of these flow rules for the cyclic flow rule of the explicit

accumulation model (m in Equation (7.2)).

5.1.2 Influence of the span, shape and polarization of the loops

First uniaxial stress cycles (σ3 = constant) with pav = 200 kPa and ηav = 0.75 are ana-

lyzed. In the tests on initially medium dense sand the stress amplitude was varied within

the range 12 kPa ≤ qampl ≤ 80 kPa. The illustration of the εacc
q -εacc

v -strain paths in Figure

5.8a demonstrates, that the amplitude of the uniaxial cycles does not influence the cyclic

flow rule. Figure 5.8b contains a plot of ω versus the strain amplitude ε̄ampl. The bar
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v /ε̇acc

q , d) reciprocal value 1/Ω

t̄ over εampl denotes, that the strain amplitude was calculated as a mean value over N

cycles (see details concerning εampl(N) in Section 5.2.1.1). The increase of ω with N is

more pronounced in the tests with larger strain amplitudes and thus larger accumulation

rates (Section 5.2.1.1). From Figure 5.8a (and similar diagrams in the following) it can

be concluded that the increase of the volumetric portion of the direction of accumulation

during cyclic loading is correlated with the residual strain εacc (or the historiotropic vari-

able gA, see Section 5.2.6) rather than with N . Probably, a significant hardening or a

significant change of the grain size distribution curve for larger amplitudes is responsible

for these observations.

Similar tests at an average stress ratio ηav = -0.5 (triaxial extension, Figure 5.9) confirmed,

that the cyclic flow rule is not a function of the stress and strain amplitude of the uniaxial

cycles.
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Also the polarization of the cycles, i.e. their direction in the stress or strain space is

of minor importance with respect to the direction of accumulation. At pav = 200 kPa

and ηav = 0.5 in-phase stress cycles with six different inclinations 0◦ ≤ αPQ ≤ 90◦ in

the P -Q-plane were tested. For each polarization, four or five stress amplitudes 20 kPa

≤
√

(P ampl)2 + (Qampl)2 ≤ 100 kPa were studied. A detailed discussion of the stress

and strain loops of this test series is given in Section 5.2.1.3. Figure 5.10 presents the

measured εacc
q -εacc

v -strain paths. Each diagram contains the paths of the tests with a

certain polarization αPQ.
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v -strain paths for in-phase stress cycles with different inclinations in
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0.05 Hz)
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Although the data for αPQ = 10◦ scatters, independently of αPQ the direction of accu-

mulation does not depend on the amplitude
√

(P ampl)2 + (Qampl)2 of the cycles. The six

diagrams in Figure 5.10 provide the mean value of the inclination 1/ω̄ of the strain paths

in the εacc
q -εacc

v -plane. The values lie within 0.97 ≤ 1/ω̄ ≤ 1.27. Since no correlation of

1/ω̄ with αPQ is noticeable, it can be concluded, that the cyclic flow rule does not depend

on the polarization of the cycles.

Also the shape of the stress or strain cycles does not influence the direction of accumu-

lation. Tests were performed with elliptic stress cycles in the P -Q-plane. The average

stress was pav = 200 kPa and ηav = 0.5. Circular cycles with different radii (Figure 5.11a),

elliptic cycles with Qampl = 80 kPa and different spans in the direction of the P -axis (Fig-

ure 5.11b) as well as elliptic cycles with P ampl = 80 kPa and different amplitudes along

the Q-axis (Figure 5.11c) were tested. A significant dependence of the inclination 1/ω̄ of

the εacc
q -εacc

v -strain paths on the shape of the cycles could not be found.

Thus, the cyclic flow rule is exclusively governed by ηav. The span, the polarization and

the shape of the stress loop (or the resulting strain loop) surrounding σ
av have no influence

on the direction of accumulation.

5.1.3 Influence of amplitude changes (packages of cycles)

Figure 5.12 presents results of tests, in which four packages of cycles were applied in

succession. Each package consisted of 2.5 · 104 cycles. The amplitudes qampl = 20, 40, 60

and 80 kPa were tested at an average stress with pav = 200 kPa and ηav = 0.75. The

sequence of the amplitudes was varied from test to test. The direction of the strain paths

in the εacc
q -εacc

v -diagram hardly changes due to the change in the amplitude. At the most,

a small increase of the ratio ε̇acc
q /ε̇acc

v was measured at the beginning of a package, when

the amplitude qampl was increased compared to the previous package. However, this was

only the case if no larger stress amplitude was previously applied.

5.1.4 Influence of the void ratio / relative density

Tests with different initial void ratios e0 but identical stresses (pav = 200 kPa, ηav = 0.75,

qampl = 60 kPa) exhibited that the cyclic flow rule does not depend on the void ratio.

Figure 5.13a demonstrates this for some of the tests which are discussed in more detail in

Section 5.2.3. The smaller inclination 1/ω̄ in Figure 5.13a in comparison to Figures 5.3a

and 5.8a can be explained by the larger residual strains in the test with ID0 = 0.24 and

the resulting larger rotation of the direction of accumulation. For high initial densities
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Figure 5.12: εacc
q -εacc

v -strain paths in tests with packages of cycles (all tests: Nmax = 105,

pav = 200 kPa, ηav = 0.75, fB = 0.25 Hz)

(ID > 0.9) the values of ω scatter significantly (Figure 5.13b) since the ratio is calculated

as the quotient of two relatively small strains. However, a clear tendency of this scattering

(i.e. an increase of the deviatoric portion in comparison to the volumetric component with

decreasing e) could not be detected. Thus, it is also assumed for high relative densities

that the direction of accumulation does not depend on e.

5.1.5 Influence of the loading frequency

Tests with different loading frequencies 0.05 Hz ≤ fB ≤ 2 Hz at identical stresses and

with similar initial densities are presented in Figure 5.14. A dependence of the cyclic flow

rule on fB could not be found.
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5.1.6 Influence of the number of cycles

The increase of the volumetric portion of the direction of accumulation with N was

discussed already in the previous sections. The tests presented up to now were restricted

to 104 or 105 load cycles. Figure 5.15 shows the results of two long-time tests, each with

2 · 106 cycles. The increase of ω with N continues also for N > 105.
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5.1.7 Influence of a static (monotonic) preloading

The influence of a monotonic preloading was also tested. Starting from p = 50 kPa,

the specimens were loaded with stress paths along the p-axis or along a line with an

inclination η = 0.75 (corresponds to K0 = 0.5) up to a certain preloading pressure 100 kPa

≤ ppreload ≤ 300 kPa (Figure 5.16a). This pressure was maintained five minutes, followed

by an unloading towards pav = 100 kPa. Subsequently, 104 cycles with an amplitude qampl

= 50 kPa were applied at pav = 100 kPa and ηav = 0 or ηav = 0.75, respectively. The tests

with ppreload = 100 kPa correspond to a non-preloaded specimen. Figure 5.16b makes clear,

that the εacc
q -εacc

v -strain paths of the three tests with the K0-preloading coincide. A similar

conclusion can be drawn for the isotropic preloading. Thus, a monotonic preloading does

not affect the direction of accumulation.

5.1.8 Influence of the grain size distribution curve

All preceding remarks on the direction of accumulation referred to the grain size distri-

bution curve No. 3 with respect to Figure 4.14. Additionally, the grain size distribution

curves No. 2 (d50 = 0.35 mm, U = 1.9), No. 5 (d50 = 1.45 mm, U = 1.4) and No. 7

(d50 = 0.52 mm, U = 4.5) were tested. The critical friction angles of the four grain size

distribution curves lay in the range 31.2◦ ≤ ϕc ≤ 33.9◦. The average stress (pav = 200

kPa, ηav = 0.75) was kept constant and the stress amplitude 12 kPa ≤ qampl ≤ 87 kPa

was varied in the tests.
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Figure 5.17 presents the εacc
q -εacc

v -strain paths for the four tested grain size distribution

curves. The diagram 5.17b for sand No. 3 repeats Figure 5.8a in order to facilitate com-

parison. Also for the three grain size distributions tested additionally, the independence

of the cyclic flow rule of the stress or strain amplitude could be confirmed. The mean

inclination of the strain paths in the εacc
q -εacc

v -diagram of the medium coarse sand No. 2

(1/ω̄ = 1.41) is slightly smaller than the one of the medium coarse to coarse sand No. 3

(1/ω̄ = 1.44). The coarse sand No. 5 exhibits a larger deviatoric component (1/ω̄ = 1.57),

the well-graded sand No. 7 a larger volumetric portion (1/ω̄ = 1.03). However, these dif-

ferences are due to the different accumulation rates (see Section 5.2.9) and the resulting

different residual strains. The larger the residual strains are, the smaller is the mean

inclination 1/ω̄. This becomes clear, if the εacc
q -εacc

v -strain paths of the four tested grain

size distribution curves for εacc
v ≤ 2% are plotted into a common diagram (Figure 5.18).

A significant difference of the inclinations of the strain paths in Figure 5.18 cannot be

detected. Thus, it can be concluded, that the direction of accumulation does not depend

on the grain size distribution curve.
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5.2 Intensity of accumulation

5.2.1 Influence of the span, shape and polarization of the loops

5.2.1.1 Span of the loop (amplitude of in-phase cycles)

First, small cycles are considered, i.e. cycles with stress paths laying between the critical

state lines in the p-q-plane. In a first test series, uniaxial stress cycles (σ3 = constant)

were tested with different stress amplitudes 12 kPa ≤ qampl ≤ 80 kPa (see the scheme

of the stress cycles in Figure 5.19). The average stress (pav = 200 kPa, ηav = 0.75) was

identical in all eight tests. The specimens were prepared with similar initial densities

0.58 ≤ ID0 ≤ 0.61.

p

q

CSL

200

150

�  = 0.75
qampl

Figure 5.19: Tests with uniaxial stress cycles and different amplitudes: stress paths in the

p-q-plane

In Figure 5.20 the q-ε1-hystereses are plotted for the test with qampl = 80 kPa and selected

numbers of cycles. The illustration makes clear, that the first cycle differs significantly

from the subsequent ones. The first quarter of the first cycle corresponds to a first loading

of the material. The residual strains at the end of the first cycle are much larger than

in the subsequent cycles. Also an increased stiffness at the beginning of the first cycle

attracts attention. This first cycle was applied after having waited a period of one hour

at the average stress σ
av. The small oscillation of the axial force (≤ ± 2 N) due to

the pneumatic loading system may be responsible for this increase of stiffness. If one

tries an interpretation using the concept of intergranular strain (Niemunis & Herle [106]),

small cycles lead to a reduction of the intergranular strain although they cause nearly

no residual strains. During the subsequent monotonic loading the strain path thus starts

from a state with an increased stiffness. In Figure 5.20 also the increase of the residual
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strain with the number of cycles is obvious.
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Figure 5.20: q-ε1-hystereses in a test with qampl = 80 kPa

Figure 5.21 shows the first cycle for the different amplitudes. All q-εq-hystereses exhibit

the increased initial stiffness (Figure 5.21a). As expected, the residual strains after the

first cycle increase with increasing stress amplitude qampl (Figure 5.21b).
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Figure 5.21: First cycle: a) q-εq-hystereses, b) residual strains

In particular in the case of the larger stress amplitudes qampl ≥ 30 kPa the strain amplitude

εampl (Figure 5.22a) decreased during the first 100 cycles and remained almost constant

during the subsequent cycles. In Figure 5.22b the mean values of the strain amplitudes

εampl
v , εampl

q , εampl and γampl over 105 cycles are plotted versus qampl. It is obvious that for
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small amplitudes the strain amplitudes are proportional to the stress amplitudes.

Figure 5.23 depicts the increase of the residual strain εacc with the number of cycles N

during the cycles with N > 1. The accumulation rate ε̇acc = ∂εacc/∂N decreases with

N . The shape of the accumulation curves εacc(N) (proportional to ln(N) for N ≤ 104,

over-logarithmic for larger numbers of cycles) is discussed in detail in Section 5.2.6. The

intensity of accumulation increases with increasing stress or strain amplitude (Figure

5.23).
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Figure 5.23: Accumulation curves εacc(N) for different stress amplitudes qampl
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In Figure 5.24 the accumulated strain εacc after different numbers of cycles is plotted

versus the square of the strain amplitude (ε̄ampl)2. Due to the variation of εampl with N

a mean value ε̄ampl = (
∫ N

1
εampl(N) dN)/N , up to the number of cycles N was used in

Figure 5.24. For a better orientation also a scale for the amplitude ε̄ampl is given at the

top of the diagram. The residual strain εacc was normalized with the void ratio function fe

(Section 5.2.3) in order to consider the slightly different initial void ratios and the different

compaction in the eight tests. The bar t̄ over fe indicates, that fe was calculated with

a mean value of the void ratio ē = (
∫ N

1
e(N) dN)/N . Independently of N , one obtains

linear curves in Figure 5.24. Thus, the accumulation rate is proportional to the square of

the strain amplitude:

ε̇acc ∼ (εampl)2 (5.1)

The relationship (5.1) is confirmed by the accumulation rates ε̇acc shown in Figure 5.25

for different numbers of cycles. In Figure 5.25 the actual strain amplitude εampl (in the

middle of the interval, which is used to evaluate ε̇acc, εampl 6= ε̄ampl) is plotted on the

abscissa. Also the function fe, which was used to normalize ε̇acc, was calculated with the

actual void ratio e (and not with ē).
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Figure 5.24: Accumulated strain εacc/f̄e plotted versus the square of the strain amplitude

(ε̄ampl)2 with ε̄ampl = (
∫ N

1
εampl(N) dN)/N

Since a well-defined direction of accumulation exists, which depends solely on the average

stress ratio ηav (Section 5.1), the intensity of accumulation (except for ė = ∂e/∂N = 0) can

adequately be expressed by the volumetric portion of accumulation, i.e. the densification
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rate ė = ∂e/∂N . Thus, instead of the accumulated strain, the change of the state variable

void ratio is considered. Equivalent to Figure 5.25, Figure 5.26 depicts the densification

rates for different numbers of cycles. The negative rates mean a reduction of void ratio.

As expected, the quadratic relationship ė ∼ (εampl)2 can be seen in Figure 5.26.

The test results coincide with the relationship εacc ∼ ζ2 derived from the tests of Marr &

Christian [94] (Section 3.2.2.2, Figure 3.15). The ”common compaction curve” proposed

by Sawicki & Świdziński [133, 134] is confuted by the own tests in Section 5.2.6.

In the accumulation model (Chapter 7), the influence of the strain amplitude on the

intensity of accumulation is captured by the function fampl with the reference amplitude

εampl
ref = 10−4:

fampl =

(

εampl

εampl
ref

)2

(5.2)

The dependence of the accumulation rate on the strain amplitude was also studied for an

average stress with triaxial extension (pav = 200 kPa and ηav = −0.5). Stress amplitudes

20 kPa ≤ qampl ≤ 50 kPa were tested (see the scheme of the stress paths in Figure 5.27).

p

q

CSL

200
�
 = -0.5

Figure 5.27: Scheme of the stress paths in the tests on fampl with triaxial extension

Figure 5.28a again presents the decrease of the strain amplitude εampl during the first

approx. 100 cycles. For N > 100 εampl remains approximately constant. In Figure 5.28b

it can be seen, that the strain amplitudes εampl
v , εampl

q , εampl and γampl are linear propor-

tional to the stress amplitude for qampl ≤ 40 kPa. For larger stress amplitudes the strain

amplitudes increased over-proportionally with qampl.

Figure 5.29a shows the accumulation curves εacc(N) in the six tests. In Figure 5.29b

εacc/f̄e is given as a function of the square of the strain amplitude (ε̄ampl)2. Independently

of N , linear curves are obtained in Figure 5.29b. Thus, the function fampl could be

confirmed also for ηav = −0.5.
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Figure 5.29: Residual strain in tests on fampl with an average stress with triaxial extension:

a) curves εacc(N), b) linear relationship between εacc/f̄e and (ε̄ampl)2

5.2.1.2 Large strain amplitudes εampl ≥ 6 · 10−4

In the tests in Section 5.2.1.1 the strain amplitudes lay below εampl = 6 · 10−4. Larger

strain amplitudes were studied in cyclic triaxial tests with a special control. Figure 5.30

presents a scheme of this control. Starting from a stress σ
0 (p0 = 200 kPa, q0 = 150

kPa), the axial strain was increased by a predefined value εampl
1 (0 → 1). Afterwards

it was reduced by 2εampl
1 (1 → 2). The stress cycle was closed by a return towards the

initial stress σ
0 (2 → 0). This mixture of displacement and load control allowed us to

test predefined strain amplitudes εampl
1 > 6 · 10−4 while the accumulation of strain (and
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not stress as in the case of a conventional displacement control) was measured.

cycle 
No. N

p

q
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2

2

0 0q0
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� av(N)

� av(N=1)
� 0

cycle 
No. 1

0 1 2 0
� ampl

1 -2 � ampl
1

Figure 5.30: Scheme of the control of the tests with large strain amplitudes εampl > 6·10−4

However, the average stress σ
av (defined as the mean value of the smallest and the largest

stress, σ
av 6= σ

0) did not remain constant during cyclic loading. As an example, Figure

5.31 shows the stress path in the p-q-plane and the q-εq-loop for different numbers of

cycles of a test with a strain amplitude ε̄ampl = 2.3 · 10−3. While the minimum deviatoric

stress qmin did hardly change during 1,000 cycles, the maximum value qmax increased with

N . This is due to an increase of the stiffness caused by cyclic loading. For the larger

numbers of cycles the stress path even exceeds the peak shear strength calculated from

Equation (4.6) for e(N), i.e. a hardening of the material with increasing N was observed.

A comparison of Figures 5.31 and 5.20 reveals, that for the large strain amplitudes tested

in this series, the stress-strain loops enclose a significantly larger area in the q-εq-plane,

i.e. as expected the dissipation of energy increases with εampl. With increasing number

of cycles the q-εq-hystereses loops become ”slimmer”.

In Figure 5.32 the residual strain is plotted as a function of the square of the strain

amplitude. The values of εacc were normalized with f̄e, f̄p and f̄Y (see the discussion of

the functions fp and fY in Section 5.2.4) in order to consider the influences of the void ratio

and the average stress. Figure 5.32 also contains the tests presented in Section 5.2.1.1. It

is obvious that the relationship ε̇acc ∼ (εampl)2 loses its validity for large strain amplitudes

(starting from approx. εampl = 10−3). The accumulation rate is approximately constant for

larger strain amplitudes, i.e. it hardly depends on εampl (see also the accumulation rates

in Figure 5.33) Figure 5.33 also shows, that the largest amplitude for which ε̇acc ∼ (εampl)2

holds, increases with the number of cycles.

Corresponding to the diagram for 50 ≤ N ≤ 100 in Figure 5.33, the εq-q- and εq-εv-

loops are depicted for N = 100 in Figure 5.34. From Figure 5.33 it can be seen, that

ε̇acc ∼ (εampl)2 is not valid for the tests with the three largest amplitudes. The cyclic stress
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paths exceed the critical state line in those tests and the sand dilates during loading

(Figure 5.34). If one assumes that Equation (5.2) loses its validity if the stress cycles

exceed the CSL, the largest strain amplitude for which (5.2) holds depends on the location

of the cycles in the stress space.
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Figure 5.34: εq-q-loops and εq-εv-loops at N = 100 for different strain amplitudes

Further research is necessary concerning this limit strain amplitude. The accumulation

model (Chapter 7) was mainly developed for small strain amplitudes (εampl ≤ 10−3). At

the moment large strain amplitudes are captured in a simplified manner. For εampl > 10−3

the accumulation rate is set constant. Thus, Equation (5.2) is extended:

fampl =







(

εampl

εampl
ref

)2

for εampl ≤ 10−3

100 = f(σav, e?) for εampl > 10−3

(5.3)

Cycles which temporary fulfill the Coulomb yield criterion need a special treatment. The

accumulation rate depends on the time the stress remains on the yield surface (Figure

5.35). Equation (5.3) loses its validity. For large cycles with alternating plastification

(Figure 5.35a,b,c), i.e. for cycles which contact the yield surface in the compression the

and extension regime of the p-q-plane, the residual strain at the end of each cycle depends

on the time the stress remains on the respective part of the yield surface. Despite large

amplitudes also stress cycles are possible which cause no accumulation (Figure 5.35c).
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However, small stress cycles can lead to large accumulation rates, if they touch the yield

surface (Figure 5.35d,e). A decay of the accumulation rate with the number of cycles

can only be expected when the yield surface evolves, due to a densification or due to

changes of the fabric of the grain skeleton. A numerical treatment of such cycles in an

accumulation model is proposed in Section 7.2.5.
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q q

εacc
q

a) b) cycle
No. 1
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No. 3

cycle
No. 1
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q
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q

c) cycle
No. 1,2,...,n

p

q qd) e)

= 0

Figure 5.35: Cycles which temporary fulfill the Coulomb yield criterion: a) to c): large

cycles with alternating plastification, d),e) small cycles, which touch the yield surface

5.2.1.3 Polarization of the cycles

In many explicit accumulation models proposed in the literature (Chapter 6), the shear

strain amplitude γampl is used as an influencing parameter. The volumetric portion of

the strain loop is not considered. In earlier versions (Niemunis et al. [112], Triantafyllidis

et al. [163]) of the accumulation model presented in Chapter 7, the strain amplitude was

also determined only from the deviatoric portion of the strain loop. The validity of this

procedure was checked in cyclic triaxial tests with a simultaneous oscillation of the axial

(σ1) and the lateral stress (σ3). The application of σ1(t) and σ3(t) without a phase-shift

in time results in in-phase cycles. At an average stress with pav = 200 kPa and ηav = 0.5

different polarizations 0◦ ≤ αPQ ≤ 90◦ with tanαPQ = Qampl/P ampl in the P -Q-plane were

tested. The inclination αPQ = 54.7◦ corresponds to σ3 = constant. For each polarization

four or five tests were performed with amplitudes 20 kPa ≤
√

(P ampl)2 + (Qampl)2 ≤ 100

kPa. In Figure 5.36a, the stress cycles are shown in the P -Q-plane and for comparison

they are depicted in the p-q-plane in Figure 5.36b.

The resulting strain loops were analyzed with the correction for membrane penetration
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being calculated from Equation (4.10). They are summarized in Figure 5.37 for N =

100. For stress cycles parallel to the P -axis almost pure volumetric strain loops were

obtained. The strain loops were almost pure deviatoric for stress cycles parallel to the

Q-axis. Although the stress cycles were perfectly in-phase the resulting strain loops for

αPQ ≤ 30◦ enclosed some area in the εQ-εP -plane.
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Figure 5.38: a) Strain amplitudes εampl (mean values over 104 cycles) as a function of

stress amplitude and b) accumulation curves εacc(N) for
√

(P ampl)2 + (Qampl)2 = 60 kPa

and different polarizations αPQ in the P -Q-plane

Independent of the polarization αPQ the relationship εampl ∼
√

(P ampl)2 + (Qampl)2 holds

(Figure 5.38a). The secant stiffness of the stress-strain-hysteresis increases with increasing

inclination αPQ of the cycles. Accordingly the strain amplitudes decrease with αPQ (Fig-

ure 5.38a). At identical values of the stress amplitude
√

(P ampl)2 + (Qampl)2, the strain

amplitudes due to deviatoric cycles (αPQ = 90◦) are twice larger than those caused by

isotropic cycles (αPQ = 0◦).

Accumulation curves εacc(N) for the stress amplitude 60 kPa and different polarizations

αPQ are shown in Figure 5.38b. Similar shapes of the curves were measured for the other

stress amplitudes. At an identical stress amplitude the accumulation rate increases with

an increasing deviatoric portion of the stress loop. The linear increase of the curves with

ln(N) (at least up to N = 2 · 103) is independent of αPQ. Analogously to Figure 5.24,

Figure 5.39 contains diagrams presenting the residual strain as a function of the square

of the strain amplitude. Each diagram corresponds to a certain polarization αPQ. Figure

5.39 confirms the relationship ε̇acc ∼ (εampl)2 independently of the direction of the cycles.

In Figure 5.40, the residual strain after 104 cycles was normalized with the void ratio
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function f̄e and plotted versus the strain amplitude ε̄ampl. The data for different polariza-

tions αPQ nearly fall together into a single curve. Thus, for a given strain amplitude ε̄ampl,

the direction of the cycles in the stress or strain space does not significantly influence the

accumulation rate. This is confirmed also by the illustration of the accumulation rates in

Figure 5.41. From this test series it can be concluded, that not only the deviatoric portion

of the strain loop should be used as an input parameter of an explicit accumulation model.

εampl
P and εampl

Q contribute equally to the accumulation rate. The strain amplitude εampl

should be determined from the full strain loop.
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Figure 5.40: Accumulated strain εacc/f̄e after N = 104 cycles as a function of the strain

amplitude ε̄ampl for stress cycles with different inclinations αPQ in the P -Q-Ebene

5.2.1.4 Shape of the cycles

The influence of the shape of the cycles was studied first in the CMDSS device and

afterwards in cyclic triaxial tests with elliptic stress cycles in the P -Q-plane.

CMDSS tests

In CMDSS tests, a circular and an uniaxial cyclic shearing with identical amplitude in the

γ13-direction (Figure 5.42) were compared. Figure 5.42 shows the accumulation curves

εacc(N) during 1,000 cycles in two tests on initially medium dense specimens. The circular

cycles cause an approximately twice faster accumulation than the uniaxial cycles.
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Tests with different shear strain amplitudes γampl
13 were performed. In Figure 5.43, the

accumulated strain after different numbers of cycles is normalized with the void ratio

function and plotted as a function of γampl
13 . Figure 5.43a presents the tests with uniaxial

cycles while Figure 5.43b contains the tests with circular strain paths.
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Figure 5.43: Comparison of the accumulated strain due to a) uniaxial (1-D) and b) circular

strain cycles in the CMDSS device

It can be clearly seen, that circular cycles cause larger residual strains than uniaxial

cycles. For the amplitude γampl
13 = 5 · 10−3 and N = 1, 000 the factor 2 is obtained

(Figure 5.43). In particular, in Figure 5.43b it is noticeable that the quadratic dependence

of the accumulation rate on the shear strain amplitude γampl
13 was not observed in the

CMDSS tests. Possible reasons are the large strain amplitudes (see Section 5.2.1.2) and

the inhomogeneous strain field (see Section 4.1.2).

Fitting curves to the data in Figure 5.43 (see the solid curves in Figure 5.43) the ratio of

the residual strains εacc due to a circular and an uniaxial cyclic shearing can be obtained.

This ratio is illustrated in Figure 5.44a. Figure 5.44b contains an analogous diagram

for the accumulation rates ε̇acc, which are shown in Figure 5.45. A decrease of the ratio

with γampl
13 and an increase with N was observed. It averages the value 2, which is in

good agreement with the tests of Pyke et al. [122] (Section 3.2.2.5). Also the amplitude

definition, which is used in the accumulation model (Chapter 7) delivers the factor 2.

This is demonstrated in Section 7.2.1.
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Cyclic triaxial tests

In the cyclic triaxial tests, the axial (σ1) and the lateral (σ3) stress were cyclically varied

with a phase-shift in time resulting in elliptic stress loops in the P -Q-plane. The cycles

were tested on initially medium dense specimens at an average stress (centre of the ellipse

in the stress space) with pav = 200 kPa and ηav = 0.5. A first impression of the location of
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the cycles in the P -Q-plane and for comparison also in the p-q-plane can be gathered from

Figure 5.46. The stress paths were chosen under consideration of a sufficient distance to

the critical state line.
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Figure 5.46: Elliptic stress cycles a) in the P -Q-plane and b) in the p-q-plane

The measured stress paths in the P -Q-plane and the εP -εQ-strain loops are presented in

the left part of Figure 5.47. The tests Nos. 5 and 9 were taken from the test series on

the influence of the polarization of the cycles (Section 5.2.1.3). Again, the strain loops

were evaluated using Equation (4.10) for the membrane penetration. Circular P -Q-cycles

led to slightly inclined nearly elliptic εP -εQ-strain loops with a considerably longer axis

in the εQ-direction. In the following, referring to Figure 5.48, the longer axis of the

εP -εQ-ellipse is denoted by 2R2 and the shorter one by 2R1. In Figure 5.48, the ratio

R1/R2 (the ”ovality” of the strain loops) is plotted as a function of the ratio of the

amplitudes P ampl/Qampl. With increasing ratio P ampl/Qampl also the ovality of the strain

loops increases. At P ampl/Qampl = 3 the loops are perfectly round. For larger values

of P ampl/Qampl (here only for test No. 10) the larger axis of the strain loop lies in the

εP -direction.

The accumulation curves εacc(N) of the tests are given in the right part of Figure 5.47.

In the tests of series No. 1 (Figure 5.47a) with circular P -Q-stress cycles, the ratios

0.3 ≤ R1/R2 ≤ 0.37 of the four strain loops were similar. Larger strain loops led to larger

accumulation rates. However, inferences on the influence of the shape of the cycles on ε̇acc

cannot be deduced yet from this series. In the test series No. 2 (Figure 5.47b) with Qampl

= 80 kPa and P ampl ≤ Qampl similar values of R2 and ratios 0.08 ≤ R1/R2 ≤ 0.30 were

measured. The accumulation runs faster with increasing R1. Due to the small values of

R1/R2 and the quadratic dependence of the accumulation rate on the strain amplitude,

the differences in R1/R2 led to only moderate differences in the accumulation rates. In
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the third test series (Figure 5.47c) with P ampl = 80 kPa and Qampl ≤ P ampl the amplitude

in the εP -direction was almost identical in the five tests. The ratio of the axes of the

strain loop took values 0.3 ≤ R1/R2 ≤ 0.76. With increasing extension of the strain loops

in the εQ-direction ε̇acc increased.

In Figure 5.49, the residual strains in the tests with OOP- and IP-stress cycles (the latter

ones were taken from Section 5.2.1.3) are compared. For the IP-stress cycles εampl = R2

holds (if one neglects the slight ovality of the corresponding strain loops). For elliptic

strain cycles the definition of the multiaxial strain amplitude presented in Section 7.2.1

delivers:

εampl =
√

(R2)2 + (R1)2 (5.4)

In Figure 5.49, the residual strain due to the OOP-stress cycles was plotted versus R2

(white triangles) and versus εampl from Equation (5.4) (gray triangles). The diagram

for N = 104 in Figure 5.47 shows the corresponding number of the test. Generally, the

difference between R2 and εampl from Equation (5.4) is not large since in most of the tests

the ratio R1/R2 did not exceed 0.3. The residual strains due to the OOP-stress cycles

which were plotted as a function of R2 are mostly larger than those in the IP-tests with

identical values of R2. This demonstrates, that ε̇acc increases with increasing ovality of

the strain loop. The definition of the strain amplitude in Equation (5.4) ”shifts” the

data points in Figure 5.49 to the right (e.g. see the data points for test No. 11 with

R1/R2 = 0.68). Therefore, they coincide better with the data points of the IP-tests. The

accumulation rates of the IP- and the OOP-cycles can then be described by a unique

relationship ε̇acc ∼ (εampl)2 (see the solid curve in Figure 5.49). On the basis of Figure

5.49, Equation (5.4) seems appropriate to describe the amplitudes of OOP-strain loops

(although there are some discrepancies for tests Nos. 4 and 8 at larger numbers of cycles).

This statement should be confirmed in future by further tests with larger ratios R1/R2.

5.2.1.5 Circulation

The circulation of the strain cycles does not influence the accumulation rate. Figure 5.50

presents the accumulation curve in a CMDSS tests with a change of the circulation from

”clockwise” to ”counterclockwise” after approx. 500 cycles. No effect of this change on

the accumulation rate could be detected.
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Figure 5.50: No influence of a change of the circulation in a CMDSS test with a circular

cyclic shearing

5.2.2 Influence of polarization changes

A change of the polarization of the cycles causes a temporary increase of the accumulation

rate. This can be clearly demonstrated by CMDSS tests with a sudden 90◦-change of the

direction of cyclic shearing. Figure 5.51 compares tests with and without a polarization

change after 1,000 cycles. The increase of the accumulation rate after the change of

the shearing direction is obvious. This effect of a polarization change decays during the

following 1,000 cycles. It is independent of the initial density.

In the accumulation model (Chapter 7), the temporary increase of the accumulation rate

due to a change of the polarization is captured by the function fπ:

fπ = 1 + Cπ1 (1 − cosα) (5.5)

Its value depends on the angle α between the actual polarization and the polarization

during the previous cycles, which is memorized weighted in a variable π called ”back

polarization”. The functionality of fπ and π is explained in more detail in Section 7.2.2.

If in a CMDSS test the polarization is not changed, cosα = 1 and fπ = 1 hold. Directly

after a change of the polarization by 90◦, cosα = 0 and fπ = 1 + Cπ1 is valid. From

a CMDSS test with a sudden 90◦-change of the polarization after N = Ncp cycles, the

course of fπ with N can be obtained as the ratio of the accumulation rate ε̇acc in this test

and ε̇acc in a similar test without such a change (Figure 5.52a,b). The material constant

Cπ1 is the difference between fπ directly before and fπ directly after the polarization

change, i.e. it can be determined from Cπ1 = fπ(N = Ncp) − 1. The curves fπ(N −Ncp)
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Figure 5.52: Decay of the temporary increase of the accumulation rate after a 90◦-change

of the polarization

for the four tests shown in Figure 5.51 are presented in Figure 5.52c. From the four tests

fπ(N = Ncp) = 5.0 and therefore Cπ1 = 4.0 were determined as mean values. The decay

of fπ with N after a polarization change is captured by the evolution equation of the angle

α, which describes an adaption of the ”back polarization” towards the actual polarization

(Section 7.2.2):

α̇ = −Cπ2α(εampl)2 (5.6)

The decay is governed by a second material constant Cπ2. It can be determined from the



116 Chapter 5. Influences on the accumulation rate

number of cycles (N −Ncp)1/2 for which the factor fπ takes the value 1 + 0.5Cπ1 (Figure

5.52c):

Cπ2 =
ln(3/2)

(εampl)2 (N −Ncp)1/2

(5.7)

The number of cycles (N −Ncp)1/2 can be seen as a kind of ”half-life” of the polarization

effect. For the four tests in Figure 5.52c, Cπ2 = 200 was obtained.

The strain amplitude εampl in Equation (5.6) was not tested experimentally yet. It results

from the consideration, that the adaption should run faster with increasing amplitude.

The quadratic dependence follows Equation (5.2). The course fπ(N −Ncp), predicted by

Equations (5.5) and (5.6) with Cπ1 = 4.0 and Cπ2 = 200, is plotted as the solid curve in

Figure 5.52c. It approximates the test data well.

5.2.3 Influence of the void ratio / relative density

The influence of the void ratio was studied in tests with different initial void ratios 0.58 ≤
e0 ≤ 0.80 (0.24 ≤ ID0 ≤ 0.99), but with identical stresses (pav = 200 kPa, ηav = 0.75,

qampl = 60 kPa). Figure 5.53 presents the q-εq-hystereses in the first cycle and the residual

strains at the end of this cycle. Due to the smaller stiffness during first loading, these

residual strains increase with the initial void ratio e0.

0 0.1 0.2 0.3 0.4 0.5 0.6
50

100

150

200

250

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84
0

0.2

0.4

0.6

0.8

Initial void ratio e0 [-]Deviatoric strain � q [%]

e0 = 0.8060.7170.6750.650
0.627

0.581

� N
=

1 
[%

]

�
�
q

�
v

a) b)

all tests:
pav = 200 kPa, 
� av = 0.75,�
 = 0.3
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Due to the decrease of the secant stiffness of the stress-strain-hysteresis with void ratio

(Section 3.3), the constant stress amplitude qampl = 60 kPa leads to an increase of the
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Figure 5.55: Accumulated strain εacc/f̄ampl in dependence on void ratio e

strain amplitudes with increasing e0 (Figure 5.54a). Selected accumulation curves εacc(N)

are presented in Figure 5.54b. The accumulation rate increases with increasing void ratio.

In Figure 5.55 the residual strains, normalized by fampl, are illustrated as a function of

the average void ratio ē = (
∫ N

1
e(N) dN)/N . The increase of εacc/f̄ ampl with ē is similar

to the curves of Hain [42] and Marr & Christian [94] shown in Figures 3.22 and 3.23. In

the accumulation model (Chapter 7) the relationship ε̇acc(e) is described by a hyperbolic

function:

fe =
(Ce − e)2

1 + e

1 + eref

(Ce − eref)2
(5.8)

In Equation (5.8) eref = emax = 0.874 is a reference void ratio for which fe = 1 holds. Ce is
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a material constant and the void ratio for which the accumulation rate vanishes (fe = 0,

”asymptotic” void ratio).

Equation (5.8) was fitted to the data in Figure 5.55. The determined values of Ce are

given at the respective curves (solid lines in Figure 5.55). Ce is (irrespective the data for

small numbers of cycles) approximately independent of N . For larger numbers of cycles,

the approximation delivered Ce = 0.54 which corresponds to 94 % of emin obtained from

the standard test procedure of DIN 18126. The void ratio emin of DIN 18126 is only a

convention. As it is known (Section 3.2.2.7), a cyclic loading may lead to larger densities.

Also the analysis of the accumulation rates (Figure 5.56) and the densification rates

(Figure 5.57) for different numbers of cycles confirmed Equation (5.8) and the limit void

ratio Ce ≈ 0.54. The densification rates show a larger scatter than the accumulation rates

(see also the scatter of the direction of accumulation in Figure 5.13b). Thus, the curve

fitting in Figure 5.56 is thought to be more reliable than the approximation in Figure

5.57.

Equation (5.8) overestimates the measured data for large initial densities ID0 > 0.9 (Figure

5.55). The approximately constant accumulation rates for ID0 > 0.9 may be due to a thin

loose zone at the top of the specimen resulting from the preparation procedure (flattening

of the surface of the pluviated sample).
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5.2.4 Influence of the average stress

5.2.4.1 Influence of the average mean pressure pav

Triaxial compression

The dependence of the intensity of accumulation on the average mean pressure was stud-

ied in six tests with 50 kPa ≤ pav ≤ 300 kPa. The average stress ratio ηav = 0.75 and

the amplitude ratio ζ = qampl/pav = 0.3 were kept constant (see the scheme of the stress

paths in Figure 5.58). The initial densities lay within 0.61 ≤ ID0 ≤ 0.69.

Figure 5.59a shows the q-εq-hystereses in the first cycle. The volumetric, deviatoric and

total strains remaining after this cycle increase under-proportional with pav (Figure 5.59b).

This is due to the dependence of the stiffness during first loading (first quarter of the first

cycle) on p and q and the increase of the stress amplitude qampl with pav (see the scheme

in Figure 5.59a).

In Figure 5.60a the mean values of the strain amplitudes over 105 cycles are plotted versus

pav. The condition ζ = qampl/pav = constant implies an increase of the strain amplitudes

with an increasing average mean pressure due to the under-linear relationship between

the secant stiffness and pav. From the shear strain amplitudes γampl(pav), an exponent

n = 0.75 can be determined for the pressure-dependence of the secant shear modulus

Ghyst ∼ (pav)n.
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Figure 5.60b presents the accumulation curves εacc(N) in the tests. Up to N = 104 hardly

any dependence of the residual strain on pav is noticeable, but for N > 104 the curves

diverge. Larger values of εacc were measured for the smaller pressures. However, it has

to be considered that in the tests with the smaller average mean pressures the strain

amplitudes were smaller. In Figure 5.61 the accumulated strain after different numbers of

cycles was normalized with f̄ampl und f̄e and plotted versus the average mean pressure pav.

The normalized residual strain decreases exponentially with pav. Therefore, the function

fp = exp

[

−Cp

(
pav

pref
− 1

)]

(5.9)

with the reference pressure pref = patm = 100 kPa and the material constant Cp is used in

the accumulation model (Chapter 7). The solid lines in Figure 5.61 and the constants Cp

annotated close to them resulted from a fitting of Equation (5.9) to the measured data for

different numbers of cycles. Apparantly Cp increases with N , i.e. the pressure-dependence

of the intensity of accumulation increases with the number of cycles. In cyclic simple shear

tests with small numbers of cycles (Silver & Seed [151], Youd [188], Sawicki & Świdziński

[133], see Section 3.2.2.6) no influence of the average stress could be detected. Beside the

general disadvantages of this test type (see Section 4.1.2), this may be due to the less

pronounced dependence ε̇acc(pav) at small numbers of cycles (N < 1, 000, Figure 5.61).
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Figure 5.61: Accumulated strain εacc/(f̄amplf̄e) in dependence on pav

In order to keep the accumulation model as simple as possible and the number of material

constants manageable, the N -dependence of Cp is neglected and a mean value Cp = 0.43

is set into approach. Figure 5.62 makes clear that the loss of model accuracy is small. In

comparison to Figure 5.61, the measured data was freed from the influences of the average
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Figure 5.62: Accumulated strain εacc/(f̄amplf̄efY fN) in dependence on pav

stress ratio (division by fY , see Section 5.2.4.2) and the number of cycles (division by fN ,

see Section 5.2.6) in Figure 5.62. Figure 5.62 shows the acceptable deviation of the test

data from the approximation given by Equation (5.9).

Figure 5.63 presents the accumulation rates for different numbers of cycles. The exponen-

tial decrease of ε̇acc with pav and the increase of Cp with N is obvious. Since the direction

of accumulation does not depend on pav (Section 5.1), similar conclusions can be drawn

for the densification rates ė in Figure 5.64.

In oder to study the validity of Equation (5.9) for average stress ratios ηav 6= 0.75, supple-

mentary tests with pav = 100, 200 und 300 kPa and average stress ratios 0.25 ≤ ηav ≤ 1.313

were performed. The average stresses of these tests are depicted as black points in Figure

5.65. The initial densities of the tests lay within 0.57 ≤ ID0 ≤ 0.69.

In Figure 5.66 the residual strains after different numbers of cycles were normalized with

f̄ampl and f̄e and plotted over a pav-Ȳ av-plane. Independently of N and the average stress

ratio Ȳ av, an increase of the residual strains with decreasing average mean pressure pav

could be observed. The increase of the accumulation rate with Ȳ av is discussed in Section

5.2.4.2.

Figure 5.67 repeats Figure 5.61 for ηav = 0.75 and presents analogous diagrams for the

five other tested average stress ratios. The exponential function (5.9) could be fitted to

the measured data for all tested average stress ratios. In Figure 5.67, the determined

constants Cp are given at the respective curve. For all tested values of ηav the constant Cp

increases with N . The largest values of Cp were obtained for ηav = 0.75. The pressure-

dependence is less pronounced for lower and larger average stress ratios. At small average
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stress ratios ηav ≤ 0.5 and low numbers of cycles N ≤ 100 hardly any pav-dependence of

ε̇acc could be detected (for some curves even negative values of Cp were determined).

In Figure 5.68 a presentation analogously to Figure 5.62 was chosen, i.e. the residual

strains were also normalized with fY and fN and compared with the approximation by

Equation (5.9). Equation (5.9) describes best the important case ηav = 0.75 (K0 = 0.5).

For other average stress ratios it may lead to an overestimation of the accumulation rate,

in particular for small pressures and low numbers of cycles. For larger numbers of cycles

(e.g. N = 105) Equation (5.9) fits well independently of ηav. Due to this reason Cp =

0.43 is kept as a material constant independently of ηav.

Triaxial extension

The dependence of the accumulation rate on the average mean pressure was further stud-

ied for the case of triaxial extension (ηav = −0.5). A scheme of the stress cycles at 50 kPa

≤ pav ≤ 300 kPa and with ζ = 0.2 is given in Figure 5.69.

Analogously to Figure 5.60a, Figure 5.70a shows the increase of the strain amplitudes

with the average mean pressure pav. The exponent of the stress-dependence of the secant

shear modulus Ghyst ∼ (pav)n was determined as n = 0.53, i.e. smaller than for triaxial

compression (n = 0.75). For 100 kPa ≤ pav ≤ 300 kPa the normalized residual strains in

Figure 5.70b can be also described by Equation (5.9) (see the solid curves resulting from

a curve-fitting). Also for ηav = −0.5 the constant Cp increases with N . The constants

Cp are similar to the values determined for triaxial compression and small average stress
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ratios (Figure 5.67). From Figure 5.69 it can be seen, that in the test with pav = 50 kPa an

accumulation rate was measured, which was larger than expected. The test was repeated

and similar results were obtained. These rates are not described by Equation (5.9). Thus,

the test with pav = 50 kPa was excluded from the determination of the constants Cp given

in Figure 5.70. A more detailed study on the accumulation rate at small pressures pav ≤
50 kPa (for triaxial compression and extension) is planned for the future.
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Figure 5.70: Influence of the average mean pressure pav on strain accumulation in tests

with triaxial extension (ηav = −0.5): a) strain amplitudes, b) residual strains

Isolines of identical accumulation rates in the pressure-void ratio-diagram

By means of Equations (5.8) and (5.9) isolines with identical accumulation rates in the e-

ln(p)-diagram can be drawn. An example with N = 1, 000, εampl = 3 ·10−4 and ηav = 0.75

is given in Figure 5.71a.



5.2. Intensity of accumulation 129

100 200 50050

0.58

0.62

0.66

0.70

V
oi

d 
ra

tio
 e

 [-
]

Mean pressure p [kPa]

εacc  [10-6 ] = 2

εampl = 3  10-4,
ηav = 0.75,
N = 1,000

1.5

1

0.7

0.5

0.3

0.2
0.1

0.05
ln(p)

e

ec - e

ec - e

ec(p)

� acc
a

� acc
a� acc

b
<

curves � acc 
= constant

a) b)

CSL

Figure 5.71: a) Isolines with ε̇acc = constant in the pressure-void ratio-diagram, b) The

accumulation rate is not controlled by the distance e− ec to the CSL

The curves ε̇acc = constant increase with ln(p), i.e. their inclination is opposite to the

inclination of the critical state line ec(p), Figure 5.71b. Hence, it can be concluded that

the intensity of accumulation under cyclic loading cannot be described by the distance

e−ec to the CSL. The scheme in Figure 5.71b makes clear, that two points in the e-ln(p)-

diagram can have different accumulation rates although their distance e− ec to the CSL

is identical. Thus, in the accumulation model the influence of barotropy and pyknotropy

is expressed by two separate functions fp and fe.

Remarks on the pressure-dependence of the secant stiffness

The pressure-dependence of the secant stiffness Ghyst ∼ pn was also studied in RC tests.

The curves of the secant shear modulus Ghyst with the shear strain amplitude γampl were

measured for four different isotropic stresses 50 kPa ≤ p ≤ 400 kPa (Figure 5.72a). If one

considers the shear modulus normalized with its maximum value Ghyst,0 = Gdyn at small

strain amplitudes, the ratio Ghyst/Ghyst,0 decreases faster with γampl for smaller pressures

compared to larger ones (Wichtmann & Triantafyllidis [180]). If for a certain shear strain

amplitude γampl the shear moduli Ghyst are taken from Figure 5.72a and plotted versus

p, the diagram in Figure 5.72b is obtained. A fitting of Ghyst ∼ pn to the measured

data revealed that the exponent n increases with increasing shear strain amplitude. For

γampl = 10−6 an exponent n = 0.45 and for γampl = 3 · 10−4 a value n = 0.60 was de-

termined. The dependence n(γampl) is responsible for the larger exponents n measured

in cyclic triaxial tests compared to measurements with small strain amplitudes (RC test,

wave propagation, Wichtmann & Triantafyllidis [183, 184, 180]). Beside the strain ampli-

tude, also the average stress ratio ηav influences n (n = 0.53 for ηav = −0.5 and n = 0.75
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for ηav = 0.75). Further RC tests on specimens with different initial void ratios and a

stepwise increase of the mean pressure 50 kPa ≤ p ≤ 400 kPa revealed that the void ratio

does not influence the exponent n (Figure 5.73).
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5.2.4.2 Influence of the average stress ratio ηav or Ȳ av

Triaxial compression

The influence of the average stress ratio on cyclic densification was first studied in eleven

tests with 0.375 ≤ ηav ≤ 1.375 (0.088 ≤ Ȳ av ≤ 1.243), pav = 200 kPa and ζ = 0.3. A

scheme of the stress cycles is given in Figure 5.74.
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Figure 5.74: Stress cycles in the tests with different stress ratios ηav

The stress-strain hystereses in the first cycle are shown in Figure 5.75a. With increasing

stress ratio ηav, the residual deviatoric strain increases due to the decrease of the stiffness

during first loading. Large deformations occur in particular for ηav ≥ 1 (corresponds to

ηmax ≥ 1.3 at qmax = qav + qampl). For the stress cycles with ηav ≥ 1.125 (Ȳ av ≥ 0.79), a

dilatation of the sand remains at the end of the first cycle (Figure 5.75b).

The strain amplitudes slightly decrease with ηav (Figure 5.76a). The accumulation curves

in Figure 5.76b demonstrate that the accumulation rate increases with increasing average

stress ratio. In Figure 5.77 the residual strains after different numbers of cycles were

normalized with f̄ampl and f̄e and plotted as a function of the average stress ratio Ȳ av.

The residual strains increase exponentially with Ȳ av. In the accumulation model (Chapter

7), this dependence of the accumulation rate on the average stress ratio is captured by

the factor

fY = exp
(
CY Ȳ av

)
, (5.10)

wherein CY is a material constant. Equation (5.10) was fitted to the measured data. The

constants CY are given at the respective curves in Figure 5.77. Irrespective of the data

for N = 20 (CY = 1.4), the constant CY varies only slightly with the number of cycles

(1.8 ≤ CY ≤ 2.1). For the tested sand a mean value of CY = 2.0 was set into approach.
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In the test with ηav = 1.375, the stress cycles touched the failure line (peak shear strength).

These cycles corresponded to the case presented in Figure 5.35d,e. The resulting large

accumulation rates (εacc = 20% after 105 cycles) cannot be described by Equation (5.10).

For these cycles the remarks in Section 7.2.5 apply.

The accumulation rates ε̇acc for different numbers of cycles in Figure 5.78 confirm Equation

(5.10). The variation of CY with N (1.4 ≤ CY ≤ 2.6) is somewhat larger than in the

analysis of the residual strains (Figure 5.77). However, the value of CY = 2.0 seems

feasible also from Figure 5.78.

While the measured densification rates ė for different numbers of cycles are depicted in

Figure 5.79, Figure 5.80 shows the curve ė(Ȳ av) predicted by the accumulation model
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for typical boundary conditions of a test. The curve in Figure 5.80 was generated for

N = 1, 000, but its shape is independent of N . In order to create the curve ė(Ȳ av) in

Figure 5.80, the flow rule of the modified Cam Clay model was used (see Section 5.1).

The relationship ė ∼ 1/
√

3/(2ω2) + 1/3 fY holds, i.e. the densification rate vanishes on

the CSL (Ȳ av = 1). In congruence with the remarks in Section 5.1, Figure 5.79 shows

that ė(Ȳ av = 1) = 0 is valid only for small numbers of cycles (i.e. for N = 10 − 20) and

that the stress ratio corresponding to ė = 0 increases with increasing N . The shape of
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the curve in Figure 5.80 can be also found in Figure 5.79 (see e.g N = 5.000 − 10.000).

Diagrams for pav = 100 kPa and pav = 300 kPa analogously to Figure 5.77 (see the average

stresses of the corresponding tests in Figure 5.65) are given in Figure 5.81. As for pav =

200 kPa, Equation (5.10) could be fitted well to the test data resulting in similar values

of the constant CY (1.6 ≤ CY ≤ 2.1 for pav = 100 kPa and 1.2 ≤ CY ≤ 2.0 for pav = 300

kPa). Equation (5.10) with CY = 2.0 seems applicable independent of pav.
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Triaxial extension

In order to check the applicability of Equation (5.10) to the case of triaxial exten-

sion, the stress cycles shown schematically in Figure 5.82 were tested (pav = 200 kPa,

−0.88 ≤ ηav ≤ 0). Due to the smaller distance of the average stress to the failure line,

smaller amplitude ratios ζ = qampl/pav = 0.2 were chosen compared to the tests with

triaxial compression. In the tests with ηav = -0.75 and ηav = -0.88 the amplitude ratio

was even reduced to ζ = 0.1 and ζ = 0.05, respectively. The tests with triaxial extension

were supplemented by tests with triaxial compression (pav = 200 kPa, 0.25 ≤ ηav ≤ 1.25)

and ζ = 0.2.
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Figure 5.82: Stress cycles in tests on fY with triaxial extension

Figure 5.83 presents the strain amplitudes as a function of ηav in the tests with ζ = 0.2.

For triaxial extension, the strain amplitudes increase with |ηav| while they decrease with

|ηav| for triaxial compression (see also Figure 5.76a). While for ηav ≥ 0 the deviatoric

strain amplitudes are significantly larger than the volumetric ones, the difference of these
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amplitudes decays with decreasing ηav. For ηav < −0.2 the amplitudes εampl
q and εampl

v

are almost identical. The strain amplitudes in Figure 5.83 reveal, that for the tested

stress amplitudes the secant stiffness of the stress-strain-hysteresis strongly depends on

the average stress ratio ηav. For small strain amplitudes (γampl ≤ 10−6) the dependence

Ghyst,0(η
av) or Es,hyst,0(η

av), respectively, is less pronounced (Wichtmann & Triantafyllidis

[184]).
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Figure 5.83: Strain amplitudes in the tests on fY with triaxial extension

The residual strains εacc normalized with f̄ampl and f̄e are shown as a function of ηav in

Figure 5.84. As in the case ηav > 0 the residual strains increase with increasing amount of

the average stress ratio |ηav| also for ηav < 0. However, the shape of the curves εacc(|ηav|)
is different for triaxial compression and extension, i.e. ε̇acc(−ηav) 6= ε̇acc(ηav) holds.

In Figure 5.85 the residual strains are plotted as a function of ηav. For Ȳ av ≥ 0, again

Equation (5.10) could be fitted to the test data resulting in material constants 1.5 ≤
CY ≤ 2.0. The application of Equation (5.10) with CY = 2.0 to the tests with ηav < 0

overestimates the accumulation rate (in Figure 5.85 this is shown by the dashed line for

N = 104). For a more precise description of the tests with triaxial extension, the following

modification of Equation (5.10) can be used:

fY = exp
[
CY 1 (Ȳ av)CY 2

]
(5.11)

A fitting of Equation (5.11) to the tests with ηav ≤ 0 (solid lines in Figure 5.85 for ηav ≤ 0)

led to 1.2 ≤ CY 1 ≤ 1.3 and 2.3 ≤ CY 2 ≤ 2.7. Thus, the following material constants are
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Figure 5.85: Comparison of the curves εacc(Ȳ av) for ηav ≤ 0 and ηav ≥ 0

proposed:

CY 1 =

{

2.0 for ηav ≥ 0

1.25 for ηav < 0

CY 2 =

{

1.0 for ηav ≥ 0

2.5 for ηav < 0

However, also Equation (5.11) cannot prevent an overestimation of the accumulation rate

at small average stress ratios with cyclic extension (0 ≤ Ȳ av ≤ 0.2).

The following hypothesis could explain the difference of the accumulation rates in the
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tests with triaxial compression and extension. It is based on the assumption that a static

preloading reduces the accumulation rate. If a specimen has sustained an isotropic static

preloading, its accumulation rate at the beginning of cyclic loading is lower than the

rate of a freshly pluviated specimen despite identical stresses and void ratios. Preloading

surfaces can be determined experimentally e.g. by the measurement of acoustic emissions

(Oda & Iwashita [115]). In the p-q-plane, such preloading surfaces are similar to the

curves drawn with grey colour in Figure 5.86. In all cyclic tests first the stress was

isotropically increased to p = σav
3 . After that, the axial stress was increased (triaxial

compression) or decreased (triaxial extension) to reach σav
1 . In the case of an average

stress with cyclic compression, the stress cycles were preceded by the monotonic stress

path 0 → 1 → 2 (Figure 5.86), in the case of triaxial extension by 0 → 3 → 4. In

Figure 5.86 it can be seen, that the cyclic loading is applied in an ”over-consolidated”

condition for small average stress ratios with triaxial extension (dashed line). This could

explain the lower accumulation rates compared to analogous stress ratios with triaxial

compression. For larger average stress ratios with triaxial extension the average stress is

”normally consolidated” and the accumulation rates are identical to the ones for triaxial

compression. Experiments presented in Section 5.2.8 contradict this hypothesis since (for

cycles with σ
av on the p-axis) only a slight reduction of the accumulation rate due to an

isotropic monotonic preloading could be detected.

preloading surface

q

p
1

2
0

3



CSL

CSL

4

Figure 5.86: Preloading surface and monotonic stress paths for reaching σ
av in tests with

triaxial compression (path 0 → 1 → 2) and triaxial extension (path 0 → 3 → 4)

The difference of the accumulation rates for triaxial compression and extension could also

be due to an influence of the direction of deposition in comparison to the direction of the

maximum and the minimum principal stresses. In the tests with triaxial compression, the

maximum principal stress was acting parallel to the direction of deposition while both

directions were perpendicular for triaxial extension. The influence of the direction of
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deposition and the polarization of cyclic loading will be studied more detailed in future.

Isolines of identical accumulation rates in the p-q-plane

Figure 5.87 presents isolines of identical accumulation rates in the p-q-plane. In Fig-

ure 5.87a the curves ε̇acc = constant were generated using Equations (5.9) and (5.10). In

Figure 5.87b, Equation (5.10) was replaced by its modified form (5.11). In both cases

the curves with an identical intensity of accumulation run parallelly to the limit lines in

a wide range of the p-q-plane.
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Figure 5.87: Isolines of identical accumulation rates ε̇acc in the p-q-plane: a) generated

from Equations (5.9) and (5.10), b) generated from Equations (5.9) and (5.11)
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5.2.5 Influence of the loading frequency

The influence of the loading frequency fB was studied in six tests with identical stresses

(pav = 200 kPa, ηav = 0.75, qampl = 60 kPa) and similar initial densities 0.50 ≤ ID0 ≤ 0.60

but different loading frequencies 0.05 Hz ≤ fB ≤ 2 Hz. For the tested range, the elastic

component of strain is independent of fB (Figure 5.88).
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Figure 5.88: Strain amplitudes in dependence on the loading frequency fB (mean values

over 105 cycles)
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In Figure 5.89, the residual strains after different numbers of cycles were normalized with

f̄ampl and f̄e and plotted as a function of fB. No systematic influence of the loading fre-

quency on the development of the residual strains could be detected. The same conclusion

can be drawn from the presentations of the accumulation rates ε̇acc and the densification

rates ė in Figures 5.90 and 5.91. This observation coincides with several studies in the

literature (Youd [188], Shenton [149], Kokusho et al. [77], Section 3.2.2.8) but contradicts

the measurements of Kempfert et al. [71].
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Figure 5.91: Densification rate ė ≈ ∆e/∆N in dependence on the loading frequency fB

5.2.6 Influence of the number of cycles and the historiotropy

If the accumulation curves εacc(N) are normalized with the functions fampl, fp, fY , fe

und fπ, the curves fall together into a band (Figure 5.92). Figure 5.92 contains the

accumulation curves of the four test series which were performed in order to determine the

functions fampl (Figure 5.23), fe (Figure 5.55), fp (Figure 5.61) and fY (Figure 5.77). For

the triaxial tests fπ = 1 holds. Up to N = 104, the accumulation curves run proportional

to the logarithm of the number of cycles. For larger numbers of cycles, the residual strains
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increase faster than with ln(N). Possibly the logarithmic portion of the curves εacc(N)

can be attributed to a re-arrangement of the grains while the over-logarithmic component

may be due to an abrasion at the particle contacts (see e.g. Katzenbach & Festag [70]).
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Figure 5.92: Normalized accumulation curves εacc(N)/(f̄amplf̄efpfY fπ), fitting of several

functions fN

In the literature, several functions are used to approximate the curves εacc(N) (Section

3.2.2.1). A logarithmic function

fN = CN1 ln(1 + CN2N) (5.12)

can be considered as well as a function consisting of a logarithmic and a linear part

fN = CN1 [ln(1 + CN2N) + CN3N ] . (5.13)

Also a power law

fN = CN1N
CN2 . (5.14)

is widely used in the literature. Equations (5.12) to (5.14) were fitted to the test data

in Figure 5.92 (see the solid or dashed curves). The determined material constants CN1

to CN3 are given in Table 5.1 (rows for the tests with Nmax = 105). Figure 5.93 presents

the normalized accumulation rates in a diagram with double-logarithmic scale. The rates

ḟN = ∂fN/∂N calculated from Equations (5.12) to (5.14) with the constants of Table 5.1

were also drawn in Figure 5.93.
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Function fN Nmax CN1 CN2 CN3

CN1 ln(1 + CN2N) 105 4.4 · 10−4 0.23 -

2 · 106 not meaningful

CN1 [ln(1 + CN2N) + CN3N ] 105 3.6 · 10−4 0.41 4.6 · 10−5

2 · 106 4.7 · 10−4 0.16 1.4 · 10−5

CN1N
CN2 105 4.7 · 10−4 0.21 -

2 · 106 4.9 · 10−5 0.41 -

Table 5.1: Possible functions fN and their material constants CNi
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Figure 5.93: Comparison of the measured accumulation rates ε̇acc normalized by fampl,

fe, fp, fY and fπ with the rate form of Equations (5.12), (5.13) and (5.14)

Equation (5.13) delivers the best approximation of the test data. Due to the linear portion

of the function also the over-logarithmic accumulation for N > 104 can be described. In

that range, the logarithmic equation (5.12) underestimates the accumulation rate. The

power law (5.14) also gives an acceptable approximation.

Also two long-term tests with 2 · 106 load cycles were performed. The corresponding

accumulation curves and the rates are depicted in Figure 5.94. The over-logarithmic

course of the accumulation curves continues for N > 105. In Figure 5.94, also the curves

resulting from Equations (5.12) to (5.14), with the material constants determined from

Figure 5.92, were drawn. Obviously, Equation (5.13) delivers slightly too large rates for

N > 105. The power law (5.14) and in particular the logarithmic equation (5.12) predict
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a too slow accumulation. By fitting Equation (5.13) to the long-term tests alone one

obtains modified constants (see the rows for Nmax = 2 · 106 in Table 5.1) and a better

approximation of the test data for N > 105. For the power law in Equation (5.14) such

a procedure is of minor success since the better description of the accumulation rates

for N > 105 enforces a bad prediction for N < 105. A fitting of Equation (5.12) to the

long-term tests is not possible. Eventually, a bilinear approximation similar to that of

Helm et al. [49] (Section 3.2.2.1) is applicable.
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Figure 5.94: a) Normalized accumulation curves εacc(N)/(f̄amplf̄efpfY fπ) and b) normal-

ized accumulation rates ε̇acc(N)/(famplfefpfY fπ) in two tests with 2 · 106 cycles

The accumulation model presented in Chapter 7 uses Equation (5.13) or its rate form,

respectively

ḟN =
CN1CN2

1 + CN2N
︸ ︷︷ ︸

ḟA
N

+ CN1CN3
︸ ︷︷ ︸

ḟB
N

(5.15)

since this equation delivers the best approximation of the test data. Equation (5.15)

consists of a portion ḟA
N , which depends on the number of cycles, and a component ḟB

N ,

which is independent of N . Since ḟB
N does not depend on N , this part may be seen as a

”basic rate” of accumulation. It may mainly result from abrasion at the grain contacts.

The part ḟA
N decays with N . This decrease of the accumulation rate with the number of

cycles may be primarily attributed to a rearrangement of the grains. Thus, the component

ḟA
N is also denoted as the ”structural” accumulation rate.

For large numbers of cycles after a decay of the portion ḟA
N , Equation (5.15) predicts an

accumulation rate ḟB
N = CN1CN3 which is almost independent of N . A further reduction

of the rate ε̇acc with N can only take place due to a decrease of the strain amplitude
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(fampl) and the void ratio (fe) resulting from compaction. However, the rates in Figure

5.94b for N > 105 seem not to approximate a lower bound. Since only two tests were

performed so far, the data for N > 105 are limited. In the future, the necessity, to modify

Equation (5.15) for N > 105 could arise from further long-term tests with Nmax > 105.

The number of cycles N alone is not a suitable state variable for the historiotropy since

it contains no information on the intensity of the cycles in the past. This intensity

significantly governs the further accumulation. A package with e.g. 106 cycles with an

evanescent amplitude (e.g. εampl < 10−6) must not influence the accumulation during a

subsequent package with larger amplitudes (e.g. εampl = 5 · 10−4). However, in the case

of Equation (5.15), the first package has a large impact on the accumulation during the

second package, since the number of cycles N is counted independently of the amplitude

of the cycles.

Ideally a (tensorial) state variable for the historiotropy should describe the fabric of the

grain skeleton. However, test methods delivering sufficient information to formulate such

a fabric tensor are missing yet (see some experiments presented by Triantafyllidis &

Niemunis [165]). Thus, in the accumulation model a phenomenological description of

the historiotropy by a scalar variable is used. This variable should weight the number of

cycles with their amplitude.

Sawicki & Świdziński [133, 134] proposed the variable Ñ =
∫

(γampl)2 dN as a measure

of the historiotropy. Ñ is based on observations, that the curves εacc
v (Ñ) in cyclic simple

shear tests with different shear strain amplitudes γampl fell together (see Section 3.2.2.2

and Figure 3.13). For the accumulation curves measured in cyclic triaxial tests and shown

in Figure 5.23, a diagram εacc(Ñ) was generated (Figure 5.95). The curves of the tests

with different amplitudes did not coincide. Thus, in the accumulation model Ñ could not

be chosen as a measure of the historiotropy.

Instead of Ñ , the state variable gA was introduced, which also weights the number of

cycles N with the corresponding amplitude εampl. Only the N -dependent portion ḟA
N of

the accumulation rate was taken into account in the formulation of gA:

gA =

∫

fampl ḟ
A
N dN (5.16)

Replacing the number of cycles N in the term for ḟA
N in Equation (5.15) by gA one obtains

the rate ḟA
N as a function of gA:

ḟA
N = CN1CN2 exp

(

− gA

CN1 fampl

)

(5.17)
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Figure 5.95: Accumulation curves εacc(Ñ) with Ñ = 1
4

∫
(γampl)2 dN : Falsification of the

”common compaction curve” of Sawicki & Świdziński [133, 134] by the own cyclic triaxial

tests

By using Equations (5.16) and (5.17), the accumulation curves in Figure 5.92 are still

described correctly, because Equation (5.13) is fulfilled for the special case εampl = con-

stant. A package of cycles with vanishing amplitudes does not influence the accumulation

during subsequent larger cycles since at the beginning of these cycles still gA ≈ 0 holds.

In Section 7.2.6 it is demonstrated that the accumulation curves in tests with packages of

cycles with different amplitudes (Section 5.2.7) can be well described by Equations (5.16)

and (5.17).

The large influence of the historiotropy on the accumulation rate becomes clear from the

void ratio curves e(N) in Figure 5.96. In the three triaxial tests, the specimens were

prepared with slightly different initial void ratios e0 and afterwards loaded with identical

stresses. If one considers a state with an identical void ratio (see the horizontal line in

Figure 5.96), the densification rates ė in the three tests differ strongly despite identical

stresses and void ratio. The freshly pluviated specimen exhibits a significantly larger

densification rate than a specimen preloaded by 40,000 cycles.

Thus, for a prediction of the accumulation in situ the knowledge of void ratio and average

stress is not sufficient. An information about the historiotropy of the soil is needed. The

phenomenological variable gA cannot be measured directly in situ but has to be estimated

by correlations. Chapter 9 deals with the problem of the determination of gA in situ.
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5.2.7 Random cyclic loading, packages of cycles and the effect

of their sequence

In practice, the amplitude of cyclic loading is constant only in special cases (e.g. machine

foundations). In the case of traffic routes the amplitudes vary due to the different weights

of the vehicles. Also in the case of cyclic loading induced by wind or waves the amplitude

fluctuates. Such random cyclic loadings cannot be calculated with an explicit accumula-

tion model since εampl = constant during a definite number of cycles is a requirement for

its applicability. However, by means of stochastic methods, an irregular cyclic loading can

be replaced by packages of cycles each with a constant amplitude (Figure 5.97). These

packages can then be handled by the explicit model. The question arises, if the sequence

of the packages influences the final value of the residual strain.

h(σ)

t

σ

t

σ

Figure 5.97: Replacing a random cyclic loading by packages of cycles each with a constant

amplitude
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This question was studied in six cyclic triaxial tests on initially medium dense specimens.

In each test the average stress was pav = 200 kPa and ηav = 0.75. Four packages each

with 25,000 cycles were applied in succession. The sequence of the amplitudes qampl = 20,

40, 60 and 80 kPa was varied. An overall view of the tested sequences is given in Figure

5.98.
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Figure 5.98: Tested sequences of the amplitudes qampl = 20, 40, 60 and 80 kPa

Figure 5.99 presents the q-ε1-hystereses of the six tests. The diagram 5.99d with the test

20 → 80 → 40 → 60 makes clear, that a package with small cycles (here qampl = 20 kPa)

increases the stiffness during a subsequent monotonic loading (in this case an increased

stiffness was observed until a deviatoric stress q ≈ qav+3qampl = 210 kPa was reached). In

that part of the stress-strain path, the stiffness during monotonic loading is approximately

identical with the secant stiffness during the previous cycles. This increase of stiffness

reduces dramatically the residual strain in the first cycle of a subsequent package with

larger amplitudes (here qampl = 80 kPa). Thus, the residual strains in the first cycles of

each package are very small for a sequence 20 → 40 → 60 → 80 (Figure 5.99a). The earlier

the packages with large amplitudes are applied the larger are the residual deformations

in their first cycles.

Figure 5.100 shows the curves of the strain amplitudes with N in the two tests with the

sequences 20 → 40 → 60 → 80 and 80 → 60 → 40 → 20. For larger stress amplitudes

qampl ≥ 60 kPa a decrease of the strain amplitude εampl with N at the beginning of a

package could be observed only, if no larger amplitude qampl than the actual one was

applied in the previous packages.

In Figure 5.101a, the development of the residual strain εacc including the strain in the

first cycles is depicted. The residual strain at the end of the fourth package was the

larger, the earlier the packages with qampl ≥ 60 kPa were applied. This can be attributed

to the larger residual strains in the first cycles (Figure 5.99). If one subtracts the strains
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Figure 5.99: q-ε1-hystereses in six tests with packages of cycles with amplitudes qampl =

20, 40, 60 and 80 kPa in different sequences (pav = 200 kPa, ηav = 0.75, fB = 0.25 Hz)
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packages of cycles with different sequences (pav = 200 kPa, ηav = 0.75, fB = 0.25 Hz)

in the first cycles of each package, Figure 5.101b is obtained. In Figure 5.101b the strain

accumulation runs the faster the later the packages with the large amplitudes are applied.

The slower accumulation in the tests with an early application of the large amplitudes

can be explained with the larger densification in the first cycles. This causes smaller void

ratios and thus smaller accumulation rates at the beginning of the subsequent cycles.

In general, from Figure 5.101 it can be concluded, that the difference of the residual strains

at the end of the tests due to a different sequence of the packages is only moderate. This

observations coincides with the tests of Kaggwa et al. [69] (for small numbers of cycles

Nmax = 50 per package, Section 3.2.2.10). Thus, as long the polarization of the cycles is

constant, the Miner’s rule [96] (Section 3.2.2.10) is approximately applicable to sand. If in

a FE calculation with an explicit accumulation model a random cyclic loading is replaced

by packages of cycles each with a constant amplitude (Figure 5.97), the influence of the

sequence of these packages on the final value of the residual deformation can be neglected.

Further tests with packages of cycles were presented by Wichtmann et al. [177] and Can-

bolat [16].

5.2.8 Influence of a static (monotonic) preloading

Six cyclic triaxial tests were performed to study, if beside a cyclic preloading also a

monotonic preloading affects the accumulation rate under cyclic loading. Starting from p

= 50 kPa, the stress was increased along a line in the p-q-plane with an inclination η = 0

(p-axis) or η = 0.75 (corresponds to K0 = 0.5) towards a preloading pressure ppreload.

After a period of 5 minutes the stress was reduced along the same stress path towards pav
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Figure 5.101: Accumulation curves εacc(N): a) with and b) without the residual strains

in the first cycles, six tests with packages of cycles with amplitudes qampl = 20, 40, 60 and

80 kPa in different sequences

= 100 kPa. At pav = 100 kPa and ηav = 0 or ηav = 0.75, 104 cycles with qampl = 50 kPa

were applied. Preloading pressures ppreload = 100 (no monotonic preloading), 200 and 300

kPa were tested. A breakage of the grains could not be expected for these pressures. The

volumetric (εv,preload) and the deviatoric (εq,preload) strains, which remained in the material

after the monotonic preloading, are given in the legends of Figure 5.102.

Figure 5.102 shows the accumulation curves εacc(N) after the monotonic preloading in

the six tests. In both cases, the isotropic (Figure 5.102a) and the K0-preloading (Figure

5.102b), the curves εacc(N) of the non-preloaded specimens and the specimens preloaded
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with ppreload = 200 kPa do hardly differ. The accumulation rates in the tests with ppreload

= 300 kPa were slightly lower compared to the tests with ppreload = 100 and 200 kPa. The

similar initial densities ID0 given in Figure 5.102 allow the conclusion, that the reduction

of the accumulation rate for larger preloading pressures ppreload cannot be attributed to

smaller initial void ratios after preloading. A change of the fabric of the grain skeleton is

more likely.

However, the accumulation rate is much less affected by a monotonic preloading than by a

cyclic one. Eventually, the polarization of the monotonic preloading in comparison to the

direction of the cycles is of importance. Additional tests with an identical polarization of

the stress path during monotonic preloading and the stress path during the cycles would

be interesting. A more significant reduction of ε̇acc due to the monotonic preloading may

be observed in that case.

5.2.9 Influence of the grain size distribution curve

The tests presented in the previous Sections 5.2.1 to 5.2.8 were all performed on the

poorly graded sand with the grain size distribution curve No. 3 (d50 = 0.55 mm, U =

d60/d10 = 1.8) referring to Figure 4.14. These tests were supplemented by experiments on

sand with the grain size distribution curves Nos. 2 and 5 (Figures 4.14 and 4.15), which

have a similar non-uniformity index 1.4 ≤ U ≤ 1.8 but different mean grain diameters

0.35 mm ≤ d50 ≤ 1.45 mm. In further tests also sand with the well-graded grain size
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distribution curve No. 7 (U = 4.5, d50 = 0.52 mm, Figures 4.14 and 4.15) was cyclically

loaded. The mean grain diameters of the grain size distribution curves Nos. 7 and 3 are

similar. Analogously to the tests described in Section 5.2.1.1, eight further tests were

performed on each of the sands Nos. 2, 5 and 7. The average stress was kept constant (pav

= 200 kPa, ηav = 0.75) and the stress amplitude (13 kPa ≤ qampl ≤ 87 kPa) was varied.

In analogy to Figure 5.22, Figure 5.103 presents the curves εampl(N) and the amplitudes

εampl
v , εampl

q , εampl and γampl (mean values over 105 cycles) as a function of the stress

amplitude qampl. Similar to sand No. 3, a decrease of the strain amplitude in the range

N ≤ 100 was measured for the sands Nos. 2 and 7. In the tests on the coarse sand No. 5

εampl remained almost constant during 105 cycles. This can be explained with the larger

secant stiffness of the stress-strain-hysteresis of sand No. 5, resulting in smaller strain

amplitudes. The strain amplitude in the test with qampl = 77 kPa e.g. amounted only

to εampl ≈ 3 · 10−4. For similar strain amplitudes, an almost constant course of εampl

with N was measured also for the sands Nos. 2, 3 and 7. The linear relationship between

the stress amplitude qampl and the strain amplitudes εampl
v , εampl

q , εampl and γampl is valid

independently of the grain size distribution curve (Figure 5.103b,d,f).

A comparison of the strain amplitudes εampl, measured for the four tested grain size

distributions, is given in Figure 5.104a. For an identical stress amplitude qampl and ID ≈
constant the smallest strain amplitudes were measured for sand No. 5 (d50 = 1.45 mm),

followed by sand No. 3 (d50 = 0.55 mm) and sand No. 2 (d50 = 0.35 mm). Thus, the

secant stiffness increases with the mean grain diameter d50 for ID ≈ constant (but: e 6=
constant). The lower initial densities in the tests on sand No. 3 (0.58 ≤ ID0 ≤ 0.61) in

comparison to the experiments on sands Nos. 2, 5 and 7 (0.62 ≤ ID0 ≤ 0.72) should be

considered. The strain amplitudes of the well-graded sand No. 7 lay only slightly above

those of sand No. 2.

For N = 1, the secant shear modulus Ghyst = τ ampl/γampl = qampl/(2γampl) was deter-

mined. In Figure 5.104b it is plotted versus the shear strain amplitude. The values of

the cyclic triaxial tests are compared with curves from RC tests (p = 200 kPa and similar

initial densities). The congruence of the results from RC tests and cyclic triaxial tests

is satisfactory for the sands Nos. 2, 3 and 7. The deviations are larger for sand No. 5,

whereas both types of tests show the same tendency, i.e. the largest stiffness for sand

No. 5. Here specimens with ID ≈ constant were considered. However, it is well-known,

that the secant stiffness of the stress-strain-hysteresis correlates with the void ratio e

rather than with ID. Remarks on the dependence of the secant stiffness on the grain size

distribution curve at e = constant follow in Section 5.2.9.1.

The increase of the residual strain εacc with the number of cycles N for the four tested
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Figure 5.103: Development of the strain amplitude εampl with the number of cycles N and

mean values of the strain amplitudes over 105 cycles as a function of the stress amplitude

for sands Nos. 2, 5 and 7
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Figure 5.104: a) Comparison of the strain amplitudes εampl(qampl) and b) the secant shear

stiffness Ghyst(γ
ampl) for the four tested grain size distributions

sands is depicted in Figure 5.105. Diagram 5.105b repeats Figure 5.23 for sand No. 3 in

order to facilitate comparison. As expected, the accumulation of residual deformations

runs faster with increasing stress amplitude for all tested grain size distribution curves.

However, the shape of the curves εacc(N) (function fN ) is different.

The accumulation rate is significantly influenced by the grain size distribution curve.

Figure 5.106a compares the residual strains of the poorly-graded sands Nos. 2, 3 and

5 (1.4 ≤ U ≤ 1.9) in tests with similar initial densities and strain amplitudes. The

accumulation rate decreases with increasing mean grain diameter d50. After N = 105

cycles, the residual strain of sand No. 2 (d50 = 0.35 mm) was approx. 1.3 times larger

than that of sand No. 3 (d50 = 0.55 mm) and approx. 3 times larger than for sand No. 5

(d50 = 1.45 mm). Figure 5.106b compares the residual strains of the sands Nos. 3 and

7 with a similar mean grain diameter (0.52 mm ≤ d50 ≤ 0.55 mm). The accumulation

rate increases significantly with the non-uniformity index U of the grain size distribution

curve. After N = 105 cycles, the residual strain of the well-graded sand No. 7 (U = 4.5)

was approx. 6 times larger than for the poorly-graded sand No. 3 (U = 1.8). The smaller

grains serve as a kind of ”ball bearing” for the larger ones. This facilitates a re-distribution

of the grains.

Until now, no sufficient amount of data for the sands Nos. 2, 5 and 7 is available in

order to determine the constants of the functions fe, fp, fY and fN . For this reason,

the accumulated strains in Figure 5.106 were not normalized with f̄e in order to consider

the different densification rates. Such normalization would even amplify the discrepancy

between the accumulation rates of the four tested sands.

The observed increase of the accumulation rate with decreasing mean grain diameter d50
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curves

confirms several reports in the literature (Section 3.2.2.12). The increase of ε̇acc with the

non-uniformity index U of the grain size distribution curve supports in-situ observations

during vibratory compaction. According to practical experience for a similar induced

energy, a well-graded sand can be compacted easier than a poorly-graded one.

The influence of the grain size distribution curve, the grain shape and the content of fines

(the latter two influences were not tested up to now) are considered in the accumulation

model (Chapter 7) by using different sets of material constants. The tests presented in this

section are part of a larger (not yet completed) test series with the aim to determine the

material constants for sands with different grain characteristics. An attempt will be made

to correlate the material constants with the grain characteristics or the granulometric

properties. Eventually, some constants are even independent of the granulometry or can
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be correlated with index parameters (e.g. Ce with emin according to DIN 18126). For

the future, a determination of a set of material constants with as few tests as possible is

desirable.

5.2.9.1 Remarks on the dependence of the secant stiffness on the grain size

distribution curve

The cyclic triaxial tests were accompanied by RC tests with material having the seven

grain size distribution curves shown in Figures 4.14 and 4.15. The influence of the gran-

ulometry on the secant stiffness of the stress-strain-hysteresis was studied. In Figure

5.107a, the secant shear modulus at small strains Ghyst,0 is plotted versus the void ratio

e for soils Nos. 1, 3, 6 and 7 and p = 100 kPa. The shear moduli of the poorly-graded

soils Nos. 1, 3 and 6 (1.3 ≤ U ≤ 1.8) agree well. They are not affected by the strongly

different mean grain diameters (0.15 mm ≤ d50 ≤ 4.4 mm). At an identical void ratio,

the shear moduli of the well-graded sand No. 7 (U = 4.5) are only half as large as the

values of the poorly-graded soils. The shear moduli of the well-graded sand are strongly

overestimated by Equation (3.5). The test results agree well with observations of Iwasaki

& Tatsuoka [67] (Section 3.3, Figure 3.34).

For all poorly-graded soils the exponent n of the relationship Ghyst,0 ∼ pn was determined

to 0.40 ≤ n ≤ 0.46 (Figure 5.107b), i.e. n is almost independent of d50. In the case of the

well-graded sand No. 7, the secant shear modulus increased faster with increasing pressure

(n = 0.55). Furthermore, the decrease of Ghyst with the shear strain amplitude γampl was

faster for the well-graded sand No. 7 than for the poorly-graded soils (Wichtmann &
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Chapter 6

Discussion of explicit accumulation

models in the literature

In the following, four explicit accumulation models for non-cohesive soils under cyclic

loading proposed in the literature are presented and discussed. The first one is the model

of Sawicki & Świdziński [133, 134] which served as the origin of the development of the

model to be presented in Chapter 7. After that, the model of Bouckovalas et al. [11] is

reviewed, which in the authors’s opinion (despite some shortcomings) is the completest

accumulation model in the literature so far. Some aspects of the model in [11] can be

also found in the model in Chapter 7. The model of Marr & Christian [94] is presented

since it is cited in the literature several times. The model of Gotschol [35, 36], another

model recently developed in Germany is also discussed. Other models (e.g. Güttler [41],

Diyaljee & Raymond [26], Kaggwa et al. [69]) are considered in the final judgement in

Section 6.2, but not discussed in detail. The models are appraised with respect to the

correct and complete description of the material behaviour which was observed in the

element tests in the literature (Chapter 3) and in the own experiments (Chapter 5).

6.1 Presentation and discussion of the models

6.1.1 Model of Sawicki & Świdziński

Sawicki & Świdziński [133, 134] formulated a model describing the densification of sand

under cyclic shearing. The model is based on the so-called common compaction curve

Φ(Ñ) = C1 ln(1 + C2Ñ) (6.1)

159
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(see Section 3.2.2.2) with the state variable ”compaction” Φ = ∆n/n0 (n: porosity), the

number of cycles weighted by the amplitude

Ñ =

∫

J dN =

∫
1

2
‖εampl

∗‖2 dN =
1

4
(γampl)2N (6.2)

and the material constants C1 and C2. In Equation (6.2), the tensor ε
ampl contains the

amplitudes of the particular strain components, i.e. εampl
ij = (εij)

ampl holds. The latter

transformation in Equation (6.2) is valid for the case of cyclic simple shear tests with

a constant shear strain amplitude γampl, which were performed by Sawicki & Świdziński

[133, 134]. The compaction rate Φ̇ = ∂Φ/∂N is obtained from Equation (6.1):

Φ̇ =
C1C2J

1 + C2Ñ
= C1C2J exp (−Φ/C1) (6.3)

The model of Sawicki & Świdziński is based on tests with a relatively low number of

cycles (N < 103). A major deficit of the model is, that only the volumetric accumulation

but not the deviatoric one is described. The volumetric portion (εampl
v ) and the shape

of the strain loop (OOP-cycles) are not considered. A dependence of the accumulation

rate on the average stress is not included in this model. The influence of the void ratio

is considered only via different constants C1 and C2. Beneficial (see Section 5.2.6) is the

usage of a measure of the historiotropy which weights the number of cycles with their

amplitudes. However, in Figure 5.95 it was demonstrated that the state variable Ñ does

not correctly describe the accumulation in cyclic triaxial tests with a large number of

cycles.

6.1.2 Model of Bouckovalas et al.

The model of Bouckovalas et al. [11] describes both, the accumulation of volumetric and

the accumulation of deviatoric strains. For the corresponding rates the following equations

were proposed:

ε̇acc
v = A (2γampl)a Ic f (6.4)

ε̇acc
q = ±B (ηav/2)b (2γampl)a Ic (6.5)

In Equation (6.5) the positive sign is valid for ηav ≥ 0 and the negative one for ηav < 0.

A, B, a, b and c are material constants. The dependence of the accumulation rates on

the historiotropy is expressed by the state variable

I =

∫ N

0

[2γampl(N)]a N c dN (6.6)
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For cycles with a constant shear strain amplitude, the rates are proportional to N c(c+1).

The parameter f in Equation (6.4) is stress-dependent. It takes the value 1 on the p-axis

and is zero on the critical state line.

The model of Bouckovalas & Whitman [11] predicts the cyclic flow rule correctly: ε̇acc
v

vanishes on the critical state line while ε̇acc
q becomes zero at ηav = 0. A power law is used

for the dependence of the accumulation rates on the number of cycles. The prediction

of an increase of ε̇acc with increasing amount of the average stress ratio |ηav| coincides

with the own experimental results. The model uses a state variable for the historiotropy

which considers also the amplitude of the cycles. The constant a = 3 is chosen in [11],

i.e. the model delivers a too strong amplitude-dependence ε̇acc ∼ (εampl)3 compared to

ε̇acc ∼ (εampl)2 measured in own tests. The volumetric portion (εampl
v ) and the shape of

the strain loop are not considered. Also the influences of the average mean pressure and

the void ratio are not captured. The rather bad documentation of the model in [11] has

to be criticized. The mathematical definition of the factor f remains vague. The material

constant c = −1.5 given in [11] leads to complex values of I c.

6.1.3 Model of Marr & Christian

The model of Marr & Christian [94] describes the accumulation of the volumetric and the

vertical strain with the power laws

ε̇acc
v = η∗av Cv Dv Ne

Dv−1 ε̇acc
1 = η∗av C1 D1 Ne

D1−1, (6.7)

wherein the strain at N = 1 is the one at the end of the first cycle. Marr & Christian

[94] described the state of stress by p∗ = (σ1 + σ3)/2, q∗ = (σ1 − σ3)/2, η∗ = q∗/p∗ and

ζ∗ = q∗ampl/p∗av. In Equation (6.7) Cv, Dv, C1 and D1 are material constants. A weighted

number of cycles Ne is defined as

Ne = N Cn Cζ Cp (6.8)

The factors Cn, Cζ and Cp consider the influence of the initial porosity n0, the stress

amplitude and the average mean pressure:

Cn = 10
n0−nref

d Cζ = 10
ζ∗−ζ∗

ref
a Cp = 10

p∗av−p∗
ref

b (6.9)

These factors are based on n0-N -, ζ∗-N - and p∗av-N -diagrams which show curves εacc
v =

constant or εacc
1 = constant, respectively. Such diagrams are presented in Figure 3.20c,d

for p∗av. The material constants a, b and d conform to the inclination of these curves.

Different constants have to be chosen for ε̇acc
v and ε̇acc

1 , i.e. Ne is not identical for the
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volumetric and the axial strain. Instead of the strain amplitude the model uses the stress

amplitude as an input parameter. An equivalent number of cycles Neq is used to describe

packages of cycles. Prior to the calculation of the next package of cycles with a definite

amplitude, the cycles in the past are converted into Neq cycles with the actual amplitude.

Since equations for ε̇acc
v and ε̇acc

1 are given, the deviatoric rate ε̇acc
q can be determined.

The different sets of material constants for the volumetric and the axial rate resulting in

different values of the weighted number of cycles Ne seem not to make much sense. The

prediction of a vanishing accumulation rate for an isotropic average stress (ηav = 0) is

obviously false, although the model captures the increase of the accumulation rate with

the average stress ratio ηav. The cyclic flow rule is described erroneously (increase of

ε̇acc
v with ηav). The increase of the accumulation rate with increasing stress amplitude

and increasing initial porosity is captured. The predicted acceleration of accumulation

with increasing average mean pressure appears doubtful regarding the own experimental

results. The consideration of the historiotropy by using an equivalent number of cycles

(see also the model of Kaggwa et al. [69]) is cumbersome.

6.1.4 Model of Gotschol

The model of Gotschol [35, 36] was developed for the prediction of deformations in the

subsoil of railways. The model describes the accumulation of vertical strains for the

special case of a cyclic loading with a constant lateral stress σ3 and a vertical stress which

oscillates between σ1 = σ3 and σ1 = σ3 + 2σampl
1 . The residual vertical strain is described

by a power law (N = 1: end of the first cycle):

εacc
1 (N) = εacc

1 (N = 1) Nα (6.10)

The residual strain after N cycles depends on the strain in the first cycle. For εacc
1 (N = 1)

and the factor α the following functional dependencies were formulated (M = mineralogy):

εacc
1 (N = 1) = f(fB, X, σ3, e,M) α = f(fB, X, σ3,M) (6.11)

The relative complex equations of εacc
1 (N = 1) and α are not repeated here, they are

given e.g. in [35]. The stress amplitude is described by a ”cyclic-dynamic stress ratio”

X = 2σampl
1 /qf , wherein qf is the deviatoric failure stress for monotonic loading. Beside

an increase of the stress amplitude, an increase of X means also an increase of pav and

qav. For the system of equations given by (6.11), a total of 21 material constants were

introduced. However, their values are neither given in [35] nor in [36]. Beside the plastic

strains, the elastic portion of deformation is described by a similar system of equations.
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The extrapolation of the accumulation rates in the subsequent cycles out of the first cycle

was used by several authors to describe element or model tests (e.g. Diyaljee & Raymond

[26], Hettler [52, 53]). In situ the soil has sustained a cyclic preloading, i.e. the cyclic

loading does not start with the ”first cycle”. Thus, a model or settlement law of the shape

(6.10) should be formulated consistently. If the residual strain between the cycles Na and

Nb is searched for, it should be of no importance, if the calculation extrapolates this strain

from the first cycle or from cycle No. Na. For all models of type (6.10) proposed in the

literature, this condition is not fulfilled (Niemunis & Wichtmann [108]).

The model of Gotschol [35, 36] predicts only the accumulation of the vertical strain.

Only the special case of uniaxial cycles with a minimum stress on the p-axis is described.

The coupling of the stress amplitude with the average stress in the variable X can be

seen as a disadvantage with respect to a generalization of the model. Within the models

presented in this chapter, the model of Gotschol [35, 36] is the only one which considers

an influence of the loading frequency fB in its constitutive relations. This contradicts

most of the experimental work in the literature (Section 3.2.2.8) and also the own test

results (Section 5.2.5). Furthermore, the number of material constants is large compared

to other models.

6.2 Comparison of the models and conclusion

Finally, in Table 6.2 the four presented accumulation models of Sawicki & Świdziński [133,

134], Bouckovalas et al. [11], Marr & Christian [94] and Gotschol [35, 36] and additionally

the models of Güttler [41], Diyaljee & Raymond [26] and Kaggwa et al. [69] are compared.

The assessment criteria are the prediction of the volumetric (ε̇acc
v ) and the deviatoric (ε̇acc

q )

strain rate, the description of the cyclic flow rule, the correct consideration of the main

influencing parameters and the usage of a meaningful state variable for the historiotropy.

A correct material description is denoted by ”+” and a partially correct or cumbersome

one is indicated by ”◦”. For a false description or a non-consideration of an aspect or an

influencing parameter ”-” is used. If an assessment could not be made, due to missing

material constants or due to the fact that the model was developed for a special case only,

this is denoted by ”*”. Furthermore, Table 6.2 summarizes which type of element test

was used to establish the explicit equations (DT = drained triaxial test, SS: simple shear

test) and how many cycles were applied in these tests.

While several models deliver equations for the deviatoric and the volumetric rate, the

cyclic flow rule is described correctly only by the model of Bouckovalas et al. [11]. The

volumetric portion of the strain loop and the shape of the cycles are considered by none of
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the seven models. Also none of the models captures the influence of the state variables void

ratio and average stress as it was observed in the tests documented in Sections 5.2.3 and

5.2.4. Mostly the historiotropy is captured by the number of cycles N or a cumbersome

equivalent number of cycles. The variable Ñ proposed by Sawicki & Świdziński [133, 134]

was disproved in own experiments. In the case of the historiotropic variable defined by

Bouckovalas et al. [11], the given material constants irritate and thus no assessment could

be made.

The assessment of the models yet proposed in the literature in Table 6.2 makes clear that

a need for an explicit model exists which delivers the accumulation rates of the volumetric

and the deviatoric strain, which describes the cyclic flow rule and considers correctly all

relevant influencing parameters. The accumulation model presented in Chapter 7 has this

aim. It was developed on the basis of the element tests presented in Chapter 5.
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Chapter 7

Bochum accumulation model for

sand under cyclic loading

7.1 History of the model

The explicit accumulation model developed in Bochum since 1999 originated from the

model of Sawicki & Świdziński [133, 134] (Section 6.1.1). In order to consider the accu-

mulation of the deviatoric strain, Niemunis [104] extended the model by the hypoplastic

flow rule. The experimental evidence of this flow rule under cyclic loading was delivered

several years later by the tests of this work (Section 5.1).

The first of the test results, presented in Section 5.2, revealed that the historiotropic

variable Ñ proposed by Sawicki & Świdziński [133, 134] had to be abandoned. Some ad-

ditional influencing parameters (average stress, void ratio) had to be considered. Niemunis

et al. [112] replaced the function (6.1) by a multiplicative approach with the functions

fampl, fN , fe, fp, fY and fπ. This approach is discussed in the following chapter. A

first mathematical formulation of the function fπ and the evolution of the so-called back

polarization π was presented by Niemunis et al. [112] and used in some other publica-

tions (Triantafyllidis et al. [163], Wichtmann et al. [176], Niemunis et al. [110]). Recently

(Niemunis et al. [111]), this formulation was replaced by a more elegant one, which is

explained in Section 7.2.2. While first Ñ (Niemunis [104]) and later only N (Niemunis

et al. [112]) were used to describe the historiotropy, the variable gA was introduced by

Niemunis et al. [110].

In order to capture multidimensional strain loops, a tensorial definition of a multiaxial

amplitude was developed by Niemunis [105]. This definition is further explained in Section

7.2.1. In first publications of the model (Niemunis et al. [110], Triantafyllidis et al. [163])

166
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the strain amplitude εampl was determined from the deviatoric portion of the strain loop

only. From the tests presented in Section 5.2.1.3 without a consideration of membrane

penetration it was concluded, that deviatoric cycles cause larger accumulation rates than

volumetric cycles. Thus, the strain loop was scaled by a factor Campl in the volumetric

direction (Wichtmann et al. [176], Niemunis et al. [110]). This scaling was abandoned

after having analyzed the tests with a consideration of membrane penetration (Section

5.2.1.3), i.e. actually εampl is determined from the full, non-scaled strain loop (Niemunis

et al. [111]).

The need for extending Equation (1.1) by a plastic strain rate Dpl was recognized by

Niemunis et al. [111].

7.2 Bochum accumulation model

The basic structure of the accumulation model is similar to that of viscoplastic models.

The number of cycles N is used instead of time t. The general stress - strain - relationship

extends Equation (1.1) and reads

T̊ = E : (D − Dacc − Dpl) (7.1)

Therein T̊ is the Jaumann stress rate, E a stress-dependent elastic stiffness (Section

7.2.3), D the strain rate, Dacc the given accumulation rate and Dpl the rate of plastic

strain (Section 7.2.4).

The rate of strain accumulation Dacc is calculated as a product of a scalar intensity of

accumulation Dacc and a tensorial direction of accumulation m (”flow rule”):

Dacc = Dacc m = fampl ḟN fe fp fY fπ m

= (fampl ḟ
A

N
︸ ︷︷ ︸

ġA

+ fampl ḟ
B

N
︸ ︷︷ ︸

ġB

) fe fp fY fπ m (7.2)

The intensity of accumulation Dacc is composed of seven multiplicative functions. The

experimental basis of these functions was discussed in Section 5.2. They consider the

following influences:

fampl: strain amplitude εampl

ḟA
N : historiotropy

(number of previous cycles N weighted by their amplitude εampl)

ḟB
N : basic rate of accumulation, independent of N

fe: void ratio e
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Function Material constants

Sand 3 ZFS

fampl =







(

εampl

εampl
ref

)2

for εampl ≤ 10−3

100 for εampl > 10−3

εampl
ref 10−4 10−4

ḟA
N = CN1CN2 exp

(

− gA

CN1fampl

)

CN1 3.6 · 10−4 1.1 · 10−3

ḟB
N = CN1CN3 CN2 0.43 0.38

ḟN = ḟA
N + ḟB

N CN3 5.0 · 10−5 5.3 · 10−5

fp = exp

[

−Cp

(
pav

pref
− 1

)]

Cp 0.43 0.43

pref 100 kPa 100 kPa

fY = exp
(
CY Ȳ av

)
CY 2.0 2.0

fe =
(Ce − e)2

1 + e

1 + eref

(Ce − eref)2
Ce 0.54 0.51

eref 0.874 0.908

fπ = 1 + Cπ1 (1 − cosα) cosα = ~Aε :: π Cπ1 4.0 4.0

α̇ = −Cπ2α(εampl)2
πneu = R :: π Cπ2 200 200

Table 7.1: Summary of the functions, reference quantities and material constants for the

medium coarse to coarse sand with the grain size distribution curve No. 3 (Figure 4.14)

and the fine sand (CFS) used in the centrifuge model test of Helm et al. [49]

fp: average mean pressure pav

fY : average stress ratio ηav or Ȳ av

fπ: polarization changes

The functions and their reference quantities are summarized in Table 7.1. Table 7.1 also

contains the material constants Ci for the medium coarse to coarse sand with the grain size

distribution curve No. 3 referring to Figure 4.14. The determination of these constants was

discussed in Section 5.2. Another column in Table 7.1 gives the set of material constants

for the fine sand (”CFS” for centrifuge fine sand), which was used in the centrifuge model

test of Helm et al. [49] (Section 3.4.1.2). This model test was re-calculated by means of

the FEM (Section 8.2.1). The functions fampl, fe, fp, fY , fN and ḟN are illustrated in

Figure 7.1, using the constants of sand No. 3.

In the accumulation model the influence of the shape of the strain loop on the accumu-
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Figure 7.1: Illustration of the functions of the explicit accumulation model for sand No. 3

(Figure 4.14): a) fampl(ε
ampl), b) fe(e), c) fp(p

av), d) fY (Ȳ av), e) fN (N), f) ḟN(N)
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lation rate is captured by a tensorial definition of the strain amplitude Aε (in general

a fourth-order tensor, Niemunis [105]), which is explained in Section 7.2.1 for the two-

dimensional case. The scalar measure

εampl = ‖Aε‖ (7.3)

enters the amplitude function fampl. As will be shown in Section 7.2.1, for the special case

of one-dimensional (in-phase) strain cycles εampl from Equation (7.3) is identical with the

classical definition of the amplitude εampl = (εmax − εmin)/2.

In Section 5.2.2 it was demonstrated, that a change of the polarization leads to a tempo-

rary increase of the accumulation rate. In order to consider this effect, the accumulation

model uses the polarization of the strain amplitude

~Aε =
Aε

‖Aε‖
. (7.4)

The polarization during the previous cycles is memorized in the so-called ”back polariza-

tion” tensor π. The most recent cycles are weighted stronger than cycles further back in

the past. In the case of a change of the polarization the accumulation rate is increased by

the function fπ. The function fπ depends on the angle α which is included by the actual

polarization ~Aε and the ”back polarization” π. An explanation of the functionality of ~Aε,

π and fπ for the two-dimensional case is given in Section 7.2.2.

As a variable for the historiotropy (so-called ”cyclic preloading”) referring to the comments

in Section 5.2.6

gA =

∫

fampl ḟ
A

N dN (7.5)

is used, i.e. beside the number of cycles in the past also their amplitude is considered.

In Section 5.1 it was shown, that the direction of accumulation m depends only on the

average stress ratio ηav = qav/pav and that it can be well approximated by the flow rules

of the modified Cam Clay model and the hypoplastic model. The hypoplastic flow rule

is given in Section 7.3. In the calculations presented in Chapter 8, the flow rule of the

modified Cam Clay model was used. This flow rule reads

m =

−1

3

(

p− q2

M2p

)

1 +
3

M2
T∗

∥
∥
∥
∥
−1

3

(

p− q2

M2p

)

1 +
3

M2
T∗

∥
∥
∥
∥

, (7.6)

wherein M = F (6 sinϕc)/(3 − sinϕc) holds. For the special case of triaxial compression

and for isotropic stresses the factor F takes the value 1. For triaxial extension it declines
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with decreasing stress ratio η = q/p:

F =







1 for η ≥ 0

1 + η/3 for η < 0
(7.7)

On the critical state line for triaxial extension F = (3 − sinϕc)/(3 + sinϕc) is valid. A

general form of F will be given in Section 7.3.1. From Equation (7.6) the ratio Ω of the

volumetric and the deviatoric accumulation rate can be obtained:

Ω = −D
acc
v

Dacc
q

= −
√

3

2

tr (m)

‖m∗‖ =

√

3

2

p(M2 − η2)

3‖T∗‖
triax
=

M2 − η2

2η
(7.8)

7.2.1 Definition of the strain amplitude

The tensorial definition of the strain amplitude Aε (in general a fourth-order tensor,

Niemunis [105]) considers that in general the strain loop penetrates several dimensions

of the strain space. The influence of the shape of the strain loop on the accumulation

rate (Section 5.2.1.4) is captured by Aε. In this section, the definition is explained for the

two-dimensional case. The full tensorial definition is given in Appendix III.

From an implicit calculation of the second cycle or a control cycle, the strain loop in

each integration point is obtained as a sequence of discrete strain points εk, k = 1, ...,M

(Figure 7.2). First, the two points of the strain loop with the largest distance have to be

selected. In the case of the loop illustrated in Figure 7.2 these are the points 5 and 11.

Their distance is denoted by 2R(2) (the t(2) stands for two-dimensional). The direction

of a straight line through these two points is described by the unit vector ~r(2). It is of no

importance which of the two possible opposite directions is chosen for ~r(2). In a second

step, the strain loop is projected onto a straight line perpendicularly to the direction ~r(2).

The span 2R(1) and the direction ~r(1) of the projected loop are determined.

In order to describe the two-dimensional case, a second-order amplitude tensor Aε is

sufficient. It is calculated from the half spans R(i) and the directions ~r(i):

Aε =
2∑

i=1

R(i) ~r(i) ⊗~r(i)

= R(1) ~r(1) ⊗~r(1) +R(2) ~r(2) ⊗~r(2) (7.9)

Since the orientation of the strain loop in the strain space is of no importance (Section

5.2.1.3), the ε+
1 -ε+

2 coordinate system in Figure 7.2 can be used for the directions ~r(i).

From Equation (7.9) one obtains:

Aε = R(1)




1

0



⊗




1

0



 +R(2)




0

1



⊗




0

1



 =




R(1) 0

0 R(2)



 (7.10)
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Figure 7.2: Strain amplitude Aε for the two-dimensional case: Determination of R(2) and

~r(2) from the original loop and R(1) and ~r(1) from the projection of this loop

and referring to Equation (7.3) the scalar measure is

εampl = ‖Aε‖ =

√

(R(1))
2
+ (R(2))

2
(7.11)

In the following, the special cases of an uniaxial cycle (span 2R, Figure 7.3a) and a

circular strain loop (radius R, Figure 7.3b) are discussed. In the case of the 1-D cycle

R(2) = R and R(1) = 0 holds. Thus εampl = R follows from Equation (7.11). Therefore, for

uniaxial cycles, the amplitude definition given by Equations (7.3) and (7.9) is identical

to the classical definition of the amplitude. For circular cycles with R(2) = R(1) = R

the strain amplitude is εampl =
√

2R. Thus, for the circular loops a
√

2 times larger

strain amplitude is obtained compared to the uniaxial cycles with the same maximum

span. If one considers the quadratic dependence of the accumulation rate on the strain

amplitude, ε̇acc ∼ (εampl)2, the accumulation model delivers a twice larger accumulation

rate for circular cycles than for uniaxial ones. This is in good agreement with the results

of the experiments presented in Section 5.2.1.4.

If several sources of cyclic loading are acting simultaneously, complex strain loops may

result from different polarizations and frequencies of the cycles. A procedure for the

determination of the strain amplitude in such cases is proposed by Niemunis et al. [111].

7.2.2 Back Polarization

In the following the functionality of

fπ = 1 + Cπ1 (1 − cosα) (7.12)
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Figure 7.3: Evaluation of the strain amplitude Aε for a) uniaxial (1-D) cycles and b)

circular strain loops

and the variable back polarization for the description of the effect of polarization changes is

explained for the two-dimensional case. Appendix III contains a corresponding description

in full tensor notation. First, the case of two subsequent packages ”a” and ”b” of cycles

with an identical polarization, but different amplitudes is considered (Figure 7.4a). In the

first package, the amplitude Aε and the polarization ~Aε are:

Aa
ε = Ra




1 0

0 0



 ~A
a

ε =




1 0

0 0



 (7.13)

If a sufficient number of cycles with the amplitude Aa
ε were applied, then π = ~A

a

ε holds

at the beginning of the second package. In the second package, the amplitude and the

polarization read

Ab
ε = Rb




1 0

0 0



 ~A
b

ε =




1 0

0 0



 , (7.14)

i.e. ~A
b

ε = ~A
a

ε = π is valid. At the beginning of the second package of cycles, the angle α

between the actual polarization ~A
b

ε and the ”back polarization” π is

cosα = π : ~A
b

ε = 1 . (7.15)

From Equation (7.12) fπ = 1 follows, i.e. the accumulation rate is not increased due to

the change from package ”a” to package ”b”.

The next case considers, that the direction of the cycles in package ”b” is rotated by 90◦

in the ε1-ε2-plane in comparison to package ”a” (Bild 7.4b). For package ”a” Equation

(7.13) still holds. For package ”b” one obtains:

Ab
ε = Rb




0 0

0 1



 ~A
b

ε =




0 0

0 1



 (7.16)
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���
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a) b)

Figure 7.4: Packages of cycles a) with and b) without a change of the polarization

At the beginning of package ”b” π = ~A
a

ε and thus

cosα = π : ~A
b

ε = 0 (7.17)

holds. From Equation (7.12) fπ = 1 + Cπ1 follows. Thus, due to the 90◦-change of the

polarization, the accumulation rate is immediately increased by the factor 1 + Cπ1.

The temporary effect of the polarization change, i.e. the decay of fπ during the subsequent

cycles with ~A
b

ε is described by an asymptotic adaption of π with N to the new polarization
~A

b

ε. Niemunis et al. [111] proposed the evolution of the angle α to be:

α̇ = −Cπ2α(εampl)2 (7.18)

In order to rotate the tensor π by an angle ∆α = α̇∆N (Figure 7.5), the rotational

operator R is used. For the two-dimensional case described here, R must be a fourth-

order tensor. In the general case (~Aε and π are fourth-order tensors), R is an eight-order

tensor. The general formulation of R can be found in Appendix III. The determination

of the material constants Cπ1 and Cπ2 was explained in Section 5.2.2.

�� �

�
new

�
old

�
	

Figure 7.5: Adaption of π to the actual polarization ~Aε

The question arises from which initial value π0 a calculation should start. It is conceivable

to prescribe a polarization along a certain direction ~r (e.g. the direction of deposition if

the cyclic loading in the past resulted from sedimentation and erosion processes):

π0 = ~r ⊗~r (7.19)
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For a chaotic initial state (no preference for a certain direction)

π0 = π
iso =

1

3
1 (7.20)

(Niemunis et al. [111]) with the unit tensor 1 can be set into approach.

7.2.3 Elastic stiffness E

The elastic stiffness E in Equation (7.1) connects the accumulation of strain with the

accumulation of stress. In FE calculations with T̊ ≈ 0 and thus D ≈ Dacc the influence

of E on the results is low. This is the case e.g. for the cyclically loaded shallow foundations

(Section 8.2). In those calculations, a simple isotropic stiffness

E = λ 1 ⊗ 1 + 2 µ I (7.21)

was used with the Lamé constants λ = Eν/(1 + ν)/(1 − 2ν) and µ = G = E/2/(1 + ν),

the identity tensor Iijkl = 0.5(δikδjl + δilδjk), the Poisson’s ratio ν = 0.2 and the pressure-

dependent Young modulus E = 300 p. If an accumulation of stress (T̊ 6= 0) is expected

(e.g. a build-up of excess pore pressure in the undrained case or a change of the normal

stresses on the shaft of a pile), the appropriate choice of E is decisive for the quality of

the numerical prediction. Niemunis et al. [113] chose an anisotropic small strain-stiffness

measured by Kuwano et al. [80] in order to calculate an undrained cyclic loading. The

calculations of the piles in Section 8.3 were performed with Equation (7.21) using ν = 0.2

and the pressure- and void ratio-dependent shear modulus G from Equation (3.5) with

the constants A = 39.7, a = 1.46 and n = 0.46 (Wichtmann & Triantafyllidis [183]). It

has to be annotated, that it is not clear yet, if a small strain-stiffness can be set into

approach for E in Equation (7.1). Eventually, also the linear stiffness L of the hypoplastic

model (Section 7.3.1) is applicable. Further experimental effort is needed to clarify this

question.

7.2.4 Plastic strain rate Dpl

In the following, the need for the plastic strain rate Dpl in Equation (7.1) is explained.

The equation

T̊ = E : (D − Dacc) (7.22)

is sufficient in the homogeneous case (e.g. in a calculation of an element test). In the

extreme case D = 0, the stress rate resulting from Dacc is inverse proportional to the flow
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rule, i.e. T̊ ∼ −m. Since on the yield surface the flow rule m always points outside, the

stress cannot leave the Coulomb pyramid.

However, in FE calculations with non-homogeneous conditions, Equation (7.22) can lead

to stresses outside the admissible range. Exemplary, this is explained by means of the FE

mesh with nine elements in Figure 7.6a. Displacements of the boundaries are prevented.

The initial stress is isotropic. Due to cyclic loading (its cause is not discussed here),

the accumulation rate is Dacc 6= 0 in the eight outer elements. Since the average stress

is isotropic, these elements contract. The element in the middle of the FE mesh is not

subjected to cyclic loading and thus, Dacc = 0 holds. However, due to the deformations of

the neighboured elements, it experiences a strain rate D > 0 (extension of the element).

In the equilibrium iteration, Equation (7.22) can be fulfilled only by a change of stress

T̊ = E : D. The stress gets more positive and can leave the Coulomb pyramid (in this

case p = −tr (T)/3 can get negative). However, in a non-cohesive soil such stresses are

physically not possible. The constitutive equation must restrict the stress not to leave

the admissible range.

Dacc = 0 Dacc = 0 Dacc = 0

Dacc = 0 Dacc = 0 Dacc = 0

Dacc = 0Dacc = 0 Dacc = 0

T1

T0

T1 T0

T2

T2

p

q
Mc( � P)

1

Eq. (7.22)

Dpl

Dpl

Eq. (7.22)

a) b)

Figure 7.6: a) The large strain rate D in the element in the middle despite Dacc = 0 due to

deformations of the neighboured elements makes the plastic strain rate Dpl indispensable,

b) Equation (7.22) may push the stress from T0 to T1 outside the Coulomb pyramid (in

the case of the example in part a along the p-axis), the plastic strain rate Dpl projects

the stress back to the yield surface (T2)

This can be achieved by extending Equation (7.22) with a plastic strain rate Dpl. The

practical realization of Dpl is identical with the procedure of elasto-plasticity. Stresses

which leave the admissible range due to Equation (7.22) are projected back to the yield

surface (Figure 7.6b). The associated flow rule of Matsuoka & Nakai [95] is used for this
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purpose. The stiffness E is replaced by

E
ep = E − E : m ⊗ m : E

K + m : E : m
(7.23)

with the flow rule m and the hardening modulus K. Thus, Equation (7.22) is transformed

to Equation (7.1):

T̊ = E : (D − Dacc) − E : m ⊗ m : E

K + m : E : m
: (D − Dacc)

︸ ︷︷ ︸

E : Dpl

(7.24)

In the calculations of shallow foundations under cyclic loading (Section 8.2), the plastic

strain rate Dpl is needed e.g. in elements at the soil surface next to the foundation. In

these elements, the strain amplitudes are low (i.e. Dacc ≈ 0). However, these elements

experience a larger D due to the deformation of the neighboured elements which lay

beneath the edge of the foundation.

7.2.5 Cycles which touch the yield surface

Explicit accumulation models are usually developed for cycles with small strain amplitudes

εampl ≤ 10−3. However, cycles which temporarily fulfill the Coulomb yield condition

(Figure 5.35) may occur in single elements. At the moment, no special treatment of

these cycles is implemented. For the future it is planned, to control during the implicit

(recording) cycle, if the stress reaches the yield surface. In this case, the accumulation

rate Dacc is not calculated from Equation (7.2) but it is set equal to the residual strain

generated by the implicit cycle.

7.2.6 Validation of the accumulation model

The accumulation model was validated by a re-calculation of the cyclic triaxial tests of

the four main series (influence of the amplitude, of the void ratio, the average mean

pressure and the average stress ratio). The strain amplitude (mean value ε̄ampl over 105

cycles or measured curve εampl(N)) and the initial void ratio e0 of the respective test were

prescribed. In this subsection due to lack of space, only six calculations are presented for

each test series.

Figure 7.7 contains re-calculations of the tests with different stress amplitudes 12 kPa

≤ qampl ≤ 80 kPa at pav = 200 kPa, ηav = 0.75 on initially medium dense specimens.

The diagrams specify the difference ∆εacc between the residual strains after 105 cycles in
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the test and in the calculation (with ε̄ampl). Their difference in percent is denoted as ∆.

The accumulation curves εacc(N) calculated with ε̄ampl and εampl(N) do not differ much

in Figure 7.7 and in the following illustrations. The prognosis of the residual strains of

the tests with amplitudes qampl ≤ 70 kPa is good. The deviations ∆εacc are relatively

small. In the tests with small amplitudes (qampl ≤ 22 kPa) the difference in percent is

larger, due to the small residual strain. However, for a settlement prognosis, this is of

minor importance. The largest difference between test and re-calculation was detected

for qampl = 80 kPa. From Figure 5.25 it could already be seen, that the approximation

by the function fampl overestimates the accumulation rates in this test.

Figure 7.8 presents the re-calculation of the tests with different initial densities 0.24 ≤
ID0 ≤ 0.94 and identical average and cyclic stresses (pav = 200 kPa, ηav = 0.75, qampl =

60 kPa). Larger differences in percent between test and re-calculation are present only

for large initial densities ID0 > 0.9. This was already addressed in Section 5.2.3. The

deviations do not exceed ∆εacc = 0.18% for any of the initial densities.

The re-calculation of the tests with different average mean pressures 50 kPa ≤ pav ≤ 300

kPa (ηav = 0.75, ζ = qampl/pav = 0.3, medium dense initial density) is shown in Figure

7.9. The N -dependence was disregarded in the function fp. For the small pressures (e.g.

pav = 50 kPa), this leads to calculated curves which, compared with the measured curves,

run steeper for small numbers of cycles and more flat for larger values of N . At large

pressures (e.g. pav = 300 kPa) this is vice versa. The best approximation is achieved

for the test with pav = 200 kPa. The largest deviation in percent was obtained for the

test with pav = 250 kPa. This is due to the scatter of the experimental data which could

already be seen in Figure 5.61.

The satisfactory prognosis of the explicit equations for the tests with different average

stress ratios 0.25 ≤ ηav ≤ 1.313 (pav = 200 kPa, qampl = 60 kPa, medium dense initial

density) is illustrated in Figure 7.10.

Figure 7.11 presents the re-calculation of the tests with packages of cycles and thus checks

the historiotropic variable gA. Once again, the accumulation rates predicted for qampl =

80 kPa are slightly too large. Despite this, the variable gA reproduces well the change of

the accumulation rate due to a change of the load amplitude, considering the prior cyclic

loading. The calculated accumulation curves follow the experimentally determined curves

εacc(N) well.
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Figure 7.7: Validation of the accumulation model: re-calculation of cyclic triaxial tests

with different stress amplitudes qampl (pav = 200 kPa, ηav = 0.75, 0.58 ≤ ID0 ≤ 0.61)
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Figure 7.8: Validation of the accumulation model: re-calculation of cyclic triaxial tests

with different initial densities ID0 (pav = 200 kPa, ηav = 0.75, qampl = 60 kPa)
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Figure 7.9: Validation of the accumulation model: re-calculation of cyclic triaxial tests

with different average mean pressures pav (ηav = 0.75, ζ = qampl/pav = 0.3, 0.61 ≤ ID0 ≤
0.69)
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Figure 7.10: Validation of the accumulation model: re-calculation of cyclic triaxial tests

with different average stress ratios ηav (pav = 200 kPa, qampl = 60 kPa, 0.57 ≤ ID0 ≤ 0.67)
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7.3 Model for the implicit cycles: Hypoplastic model

with intergranular strain

In the FE calculations presented in Chapter 8, the hypoplastic material model (Kolymbas

[78], Gudehus [38], von Wolffersdorff [172]) with the extension of the intergranular strain

(Niemunis & Herle [106]) was used for the implicit calculation steps, i.e. for the initial

equilibrium, the first two cycles and the control cycles. The model is described in the

following and its prognosis of the material behaviour is studied.

7.3.1 Basic version of the hypoplastic model

7.3.1.1 Original version according to von Wolffersdorff

The general form of the hypoplastic model reads:

T̊ = L : D + N ‖D‖ =

(

L + N
D

‖D‖

)

︸ ︷︷ ︸

M

: D (7.25)

Therein T̊ is the Jaumann stress rate and D is the strain rate. Here contrary to D in

Equation (7.1) ”rate” means a derivative with respect to time and not with respect to

the number of cycles. L and N are the fourth-order linear and the second-order nonlinear

stiffness tensor. For sand they can be calculated referring to von Wolffersdorff [172] from:

L = fb fe
1

T̂ : T̂

(

F 2
I + a2 T̂T̂

)

(7.26)

N = fb fe fd
F a

T̂ : T̂

(

T̂ + T̂
∗
)

(7.27)

Therein T̂ = T/trT is a dimensionless stress and Iijkl = 0.5(δikδjl + δilδjk) is an identity

tensor. The parameters a and F in Equations (7.26) and (7.27) describe the failure

criterion in the deviatoric plane (failure criterion of Matusoka & Nakai [95], Figure 7.12a):

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc

(7.28)

F =

√

1

8
tan2 ψ +

2 − tan2 ψ

2 +
√

2 tanψ cos (3θ)
− 1

2
√

2
tanψ (7.29)

tanψ =
√

3 ‖T̂∗‖ (7.30)

cos (3θ) = −
√

6 tr
(

T̂
∗ · T̂∗ · T̂∗

)

/
[

T̂
∗

: T̂
∗
] 3

2

(7.31)



7.3. Hypoplastic model 183

ϕc is the critical friction angle. The angles ψ and θ describe the position of T in the stress

space (Figure 7.12b).
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 T2 =
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tr(T
)/  3
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eced0
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a) b) c)

Figure 7.12: a) Failure criterion of Matusoka & Nakai [95], b) Geometric interpretation

of the angles ψ and θ, c) Reduction of void ratio e with mean pressure p after Equation

(7.35)

The factors fb, fe and fd consider the influence of pressure (barotropy) and density (py-

knotropy) on stiffness:

fd =

(
e− ed

ec − ed

)α

(7.32)

fe =
(ec

e

)β

(7.33)

fb =

(
ei0

ec0

)β
hs

n

1 + ei

ei

(
3p

hs

)1−n [

3 + a2 − a
√

3

(
ei0 − ed0

ec0 − ed0

)α]−1

(7.34)

Therein α, β, hs (granular hardness) and n are material constants. The void ratios

ed, ec and ei correspond to the densest, the critical and the loosest possible state. With

increasing mean pressure p they decrease affine to each other according to Equation (7.35)

after Bauer [7] (Figure 7.12c):

ei

ei0

=
ec

ec0

=
ed

ed0

= exp

[

−
(

3p

hs

)n]

(7.35)

In Equation (7.35) the index ”0” in ei0, ec0 and ed0 corresponds to the stress-free state

(p = 0). The hypoplastic flow rule can be calculated from

m = − L
−1 : N

‖L−1 : N‖ = − f1(T̂ + T̂
∗
) + f2T̂

‖f1(T̂ + T̂
∗
) + f2T̂‖

(7.36)

with f1 = F 2 + a2 T̂ : T̂ and f2 = −a2 T̂ : (T̂ + T̂
∗
). For the triaxial case (axial stress
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σ1 = −T1, lateral stress σ3 = −T3), the scalar measure Ω is

Ω = −D
acc
v

Dacc
q

= −
√

3

2

tr (m)

‖m∗‖
triax
=

9

2

f1 + f2

2f1 + f2

1

η
(7.37)

with

f1 = F + a2 T1
2 + 2T3

2

(T1 + 2T3)2
and f2 = − a2 5T1

2 − 4T1T3 + 8T3
2

3(T1 + 2T3)2
(7.38)

If the factor fd after Equation (7.32) is applied some deformation paths may lead to an

under-shooting of the lower bound ed of the void ratio (Niemunis et al. [107]). In order

to prevent this, Niemunis et al. [107] modified the factor fd for e < ec:

fd =

(
e− ed

ec − ed

)α

+

[

1 −
(
e− ed

ec − ed

)α]z

f̄d (7.39)

f̄d = −Me
(d) (1 + e)

√
3 +MT

(d) fb fe

√
3 (3 + a2)

MT
(d) fb fe 3a

(7.40)

MT
(d) = − ed

hs
n

(
3p

hs

)n−1

Me
(d) = 1 (7.41)

MT
(d) and Me

(d) are the components of a vector perpendicular to the yield surface. The

exponent z = 5 delivers an improved numerical stability.

7.3.1.2 Modified version with increased shear stiffness

Niemunis [105] demonstrated that the original version of the hypoplastic model presented

in Section 7.3.1.1 exhibits a too low shear stiffness for the case of shear deformations near

the p-axis. In a re-calculation of a cyclic undrained shearing, a much too fast build-up of

pore water pressure was obtained (Figure 7.13). The extension of the intergranular strain

presented in Section 7.3.2 cannot solve this problem [105].

In order to improve the constitutive equation Niemunis [105] proposed a modification of

the shear stiffness. The Poisson’s ratio ν was introduced as another material constant

(original version: ν = 0.38 is too large). The modified stiffness tensor Ln reads:

Ln = L + fb fe
1

T̂ : T̂





(

1 + a2

3
+ a√

3

)

(1 − 2ν)

1 + ν
− 1



 (I − 1

3
1 ⊗ 1). (7.42)

The flow rule given in Equation (7.36) was maintained. Thus, the nonlinear stiffness N

had to be adapted:

Nn = Ln : (L−1 : N) (7.43)
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Figure 7.13: Calculation of an undrained cyclic loading with the original version (OV)

and the modified version (MV) of the hypoplastic material model, after Niemunis [105]

This version of the hypoplastic model with increased shear stiffness is referred to as the

”modified version” (MV). The description ”original version” (OV) refers to the version of

the model described in Section 7.3.1.1.

7.3.1.3 Material constants

For the hypoplastic model, eight material constants ϕc, hs, n, ed0, ec0, ei0, α and β have to

be determined. The corresponding procedure for the OV, using standard laboratory tests

(Herle [50]), is explained in the following. Concerning details and alternative methods see

[50].

� The critical friction angle ϕc can be determined from undrained triaxial tests or

cone pluviation tests. In the cone pluviation test, ϕc is the inclination of the cone.

� The granular hardness hs and the exponent n describe the decrease of the void ra-

tios ei, ec, ed and e with increasing mean pressure p (Figure 7.12c). The constants

are obtained from tests with a proportional compression, e.g. an oedometric com-

pression. Equation (7.35) is fitted to the measured curves e(p) (Figure 4.19a). The

initial void ratio of the tests should be chosen ideally in the range ec0 ≤ e0 ≤ ei0.

However, e0 = emax is thought to be a satisfactory initial state (Herle [50]).

� After Herle [50], the asymptotic void ratios at p = 0 can be estimated from ei0 ≈
1.15 emax, ec0 ≈ emax and ed0 ≈ emin.

� The constant α controls the influence of the density on the peak friction angle ϕP .

In order to determine α, tests with triaxial compression are performed on initially
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dense specimens. From the stress ratio KP = T1/T3 at the peak of the curves q(ε1)

and the corresponding void ratios e, ec and ed the constant α can be calculated:

α =
1

ln re

ln



6
(KP + 2)2 + a2 KP (KP − 1 − tan νp)

a (5KP − 2) (KP + 2)
√

4 + 2 (1 + tan νP )2



 (7.44)

with a from Equation (7.28), the pressure-referenced relative density re = (e −
ed)/(ec − ed) and

tan νP = 2
(KP − 4) + A KP (5KP − 2)

(5KP − 2) (1 + 2A)
− 1 (7.45)

A =
a2

(KP + 2)2

[

1 − KP (4 −KP )

5KP − 2

]

(7.46)

� The constant β effects an increase of the stress rate T̊ with increasing density of the

specimens at D = constant. It can be obtained from oedometric tests on specimens

with different initial densities (e.g. the tests on loose sand for hs and n can be

supplemented by tests on dense sand, Figure 4.19b). For a certain pressure p the

void ratio e and the constrained modulus Es = ∆T1/∆ε1 are determined. T1 is the

vertical stress corresponding to p and ε1 is the logarithmic vertical strain. If the two

different densities are identified by tI and tII , the constant β is calculated from:

β =

ln

(
EsII

EsI

mI − nI fdI

mII − nII fdII

)

ln

(
eI

eII

) (7.47)

with m =
(1 + 2K0)

2 + a2

1 + 2K0
2 and n =

a (5 − 2K0)(1 + 2K0)

3(1 + 2K0
2)

. (7.48)

The coefficient of lateral pressure can be obtained from the Jaky formula K0 =

1 − sinϕP .

Following this procedure, the hypoplastic material constants of the OV were determined

for the medium coarse to coarse sand No. 3 (Figure 4.14) using the test results presented

in Chapter 4.3 (set of constants I in Table 7.2). Similar tests (not shown in this work)

were performed in order to determine the constants of the centrifuge fine sand (set of

constants III in Table 7.2).

For the modified version (MV) with increased shear stiffness, Niemunis [105] proposed the

modified stiffness tensors but not an adaption of the material constants. If the constants of

the OV determined after Herle [50] or following the list given above were used also for the



7.3. Hypoplastic model 187

Material constant Sand 3 CFS

OV MV OV MV

Set of constants I II III IV V

ν (0.38) 0.2 (0.38) 0.2 0.2

ϕc [◦] 31.2 31.2 32.8 32.8 32.8

hs [MPa] 591 30 5580 150 150

n 0.50 0.65 0.30 0.40 0.40

ed0 0.577 0.577 0.575 0.575 0.575

ec0 0.874 0.874 0.908 0.908 0.908

ei0 1.005 1.005 1.044 1.044 1.044

α 0.12 0.20 0.12 0.12 0.12

β 1.0 1.0 1.6 1.0 1.0

R 10−4 10−4 10−4 10−4 10−4

mR 2.9 3.8 3.0 3.9 5.5

mT 1.45 1.9 1.5 1.85 2.0

χ 6.0 6.0 6.0 6.0 6.0

βr 0.2 0.2 0.2 0.2 0.2

Table 7.2: Summary of the material constants of the hypoplastic model and the inter-

granular strain for sand No. 3 referring to Figure 4.14 and the centrifuge fine sand (CFS)

MV, the stiffness would be strongly overestimated. At the moment, the material constants

of the MV are chosen from a re-calculation of q-ε1-curves from monotonic drained triaxial

tests. The constants are varied, until the test data is reproduced well. It should be

annotated, that the constants hs and n determined this way in combination with Equation

(7.35) do not longer describe the curves e(p) in oedometric tests on specimens prepared

with the maximum void ratio. Table 7.2 summarizes the constants of the MV for sand

No. 3 (set of constants II) and the centrifuge fine sand (sets of constants IV/V)

7.3.1.4 Check of the model prediction

The prognosis of the material behaviour by the OV and the MV of the hypoplastic model

was checked in re-calculations of drained monotonic triaxial tests. The test results were
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already presented in Figures 4.16 and 4.17. For the re-calculation of the element tests

the Fortran program ”UMA” (author: A. Niemunis) was used. This program simulates

a calculation in a single integration point. In Figures 7.14 and 7.15, the measured and

calculated curves q(ε1) and εv(ε1) are compared.
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Figure 7.14: Re-calculation of drained monotonic triaxial tests with the OV of the hy-

poplastic model and set of constants I in Table 7.2

The curves in Figure 7.14 were obtained from calculations with the OV and the set of

constants I referring to Table 7.2. The congruence of the calculated and measured curves

is not perfect, but acceptable. Generally, the calculated curves q(ε1) reach the peak value

at too small strains. The shear strength is overestimated for large densities.

The curves in Figure 7.15 were generated in calculations with the MV and the set of

constants II referring to Table 7.2. While the curves q(ε1) hardly differ from the curves

received with the OV, the contractancy is overestimated by the MV.
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test re-calculation
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Figure 7.15: Re-calculation of drained monotonic triaxial tests with the OV of the hy-

poplastic model and set of constants II in Table 7.2

A deficit of the original version of the hypoplastic model according to von Wolffersdorff

[172] is the too small shear stiffness near the p-axis. The modified version with an increased

shear stiffness proposed by Niemunis [105] overestimates the contractancy. Furthermore,

no simple procedure for the determination of the material constants from standard labo-

ratory tests exists so far for the MV. The constants hs and n lose their original meaning.

The advantages of both versions (OV and MV) should be combined in order to obtain a

powerful hypoplastic material formulation. At present, corresponding efforts are under-

taken in Bochum.
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7.3.2 Extension by the intergranular strain

7.3.2.1 Motivation and mathematical formulation

Cyclic processes cannot be calculated correctly with the basic version of the hypoplastic

model presented in Section 7.3.1. The increase of the stiffness, due to a change of the

strain path, is not reproduced adequately. Thus, with each stress cycle an unrealistic

large strain remains in the material (”Ratcheting”, Figure 7.16).
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In order to eliminate this deficit and to consider the path-dependence of the stiffness,

Niemunis & Herle [106] introduced the state variable ”intergranular strain” h, which

memorizes the last part of the previous strain path. At most, ‖h‖ can take the value R

(material constant). A measure of the mobilization of the intergranular strain is

ρ =
‖h‖
R

. (7.49)

Depending on the angle between the actual strain rate D and the direction of the inter-

granular strain ~h = h/‖h‖ the stiffness M in Equation (7.25) is increased:

M = [ρχ mT + (1 − ρχ) mR] L +







ρχ(1 −mT )L : ~h~h + ρχ N~h for ~h : D > 0

ρχ(mR −mT )L : ~h~h for ~h : D ≤ 0
(7.50)

In Equation (7.50) mT , mR and χ are material constants. In the following, the function-

ality of Equation (7.50) is demonstrated for the case of plane strain. Corresponding stress
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response envelopes are illustrated in Figure 7.17 for the special cases % = 0 (intergranular

strain = zero) and % = 1 (intergranular strain fully mobilized). For a soil without a

preloading (% = 0), independently of the direction of loading, the linear stiffness increased

by mR is used (M = mR L). Also for a fully mobilized intergranular strain (% = 1) and a

return of the strain path the stiffness takes the maximum value M = mR L. In the case

of a rotation of the strain path by 90◦ at % = 1, the linear stiffness L is multiplied by the

factor mT (M = mT L). In all these cases, the nonlinear stiffness N remains unconsidered.

Between % = 0 and % = 1, the stiffness is interpolated. For a loading with % = 1 and

D ∼ ~h the stiffness reads M = L + N D/‖D‖, i.e. it is identical with the stiffness for

monotonic deformation paths given in Equation (7.25). The equation of evolution for the

objective rate of the intergranular strain h̊ is:

h̊ =







(I − ~h~h%βr) : D for ~h : D > 0

D for ~h : D ≤ 0
(7.51)

Therein βr is another material constant.

7.3.2.2 Material constants

The extension of the hypoplastic model by the intergranular strain requires the determi-

nation of the five material constants R, mR, mT , χ and βr. A possible procedure was

described by Niemunis & Herle [106]. In this work, an alternative way was chosen. The

constants were obtained from a fitting to the strain amplitudes measured in cyclic triaxial

tests.

First, by means of Figure 7.18, a general problem of the present formulation of the inter-

granular strain and the choice of the material constants is discussed. Figure 7.18 presents

the calculation of a triaxial test. At a constant lateral stress σ3 = 150 kPa starting from

the isotropic state the deviatoric stress was increased to q = 250 kPa. After that, two

cycles were applied, each with the maximum deviatoric stress qmax = 250 kPa and the

minimum one qmin = 250 kPa - 2qampl. Finally, the deviatoric stress was increased to q =

350 kPa. The q-ε1-curves for the amplitudes qampl = 20, 40, 60 and 80 kPa are given in

Figure 7.18. The constants of the intergranular strain were chosen in such way that a real-

istic prediction of the q-ε1-curve was achieved for qampl = 60 kPa (Figure 7.18c). Realistic

prediction means slightly hysteretic q-ε1-curves during the cycles, a small residual strain

at the end of the cycles and a stiffness during the continued loading (q > 250 kPa), which

is identical with the stiffness of the first loading towards q = 250 kPa before the first cycle

(a possible increase of the stiffness due to the cycles (Figure 5.99) is disregarded here).

For the smaller amplitudes qampl = 20 and 40 kPa, the same set of material constants
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causes an overshooting of the stress path when the loading was continued after the second

cycle (q > 250 kPa), i.e. the transition from the stiffness of reloading to the stiffness of

continued (first) loading occurs too late (at a too large deviatoric stress). For the largest

amplitude qampl = 80 kPa, this transition occurs too early which results in an unrealistic

ratcheting.
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Figure 7.18: Calculation of a triaxial test with two interposed cycles

In a FE calculation of a boundary value problem with cyclic and subsequent monotonic

loading (e.g. calculation of packages of cycles with different average stresses, Canbolat

[16]), the stress amplitude is different in each integration point. However, with a certain

set of constants of the intergranular strain, the stress-strain behaviour can be predicted

correctly only for one amplitude qampl
ref . This implies the following disadvantages:

� In integration points with qampl < qampl
ref , the deformation path during the monotonic

loading following the cycles is calculated incorrectly. A too stiff material behaviour

is predicted.

� In integration points with qampl > qampl
ref , the ratcheting leads to an overestimation

of the strain amplitude and thus to too large accumulation rates in the explicit

calculation.

Eventually, as proposed by Niemunis (Section 4.3.7 in [105]), the described problem can

be solved by a coupling of multiple intergranular strains. Future effort on this field is

indispensable for realistic FE predictions.

In the FE calculations presented in Chapter 8, a cyclic loading without a subsequent

monotonic loading or a change of the average value of the external load during the cycles

is considered. In this case it can be accepted if the stress path during a monotonic loading

after the cycles would overshoot. A ratcheting for large amplitudes can be avoided by
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choosing large values for the constants R and χ and a small one for βr. Then the stress-

strain loops are hardly hysteretic. At least for amplitudes qampl ≤ 80 kPa this coincides

with test results presented in Section 5.2.1.1. The inclination of the hystereses and thus

the secant stiffness can be adjusted via the constant mR (Figure 7.19). mR is chosen in

such way, that the strain amplitudes measured in the experiments are reproduced.
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The residual strain remaining at the end of each cycle is not predicted realistically by this

choice of the material constants of the intergranular strain since unloading and reload-

ing are almost elastic. However, the implicit cycles (second cycle and control cycles) are

primarily calculated to estimate the strain amplitude. A realistic prediction of the accu-

mulation is not necessary, since this is the task of the explicit accumulation model. The

residual strains in a cycle Ni calculated implicitly can be ignored, i.e. the subsequent

explicit calculation of the residual strains may start from the beginning of cycle Ni.

The constants of the intergranular strain for sand No. 3 (Figure 4.14) were determined by

fitting the data of the cyclic triaxial tests with uniaxial stress cycles and different stress

amplitudes qampl (presented in Section 5.2.1.1). In a re-calculation of the first two cycles

of the tests with the Fortran program UMA (see Section 7.3.1.4) R = 10−4, χ = 6.0 and

βr = 0.2 were chosen and mR was varied until the strain amplitudes εampl measured in

the tests could be reproduced. Figure 7.20a presents the q-ε1-curves of the re-calculation

for different amplitudes qampl. In Figure 7.20b, the calculated strain amplitudes εampl

(determined from the second cycle) are compared with the values determined experimen-

tally (mean values over 105 cycles). Since in the cyclic triaxial tests the stress path is

rotated by 180◦ in the extrems of q(t), the material constant mT does not influence the
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calculation. It was set to mT = 0.5 mR. Table 7.2 summarizes the determined sets of

constants for sand No. 3 and the centrifuge fine sand. The set of constant V is further

addressed in Section 8.2.1.
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7.3.2.3 Check of the model prediction

From Figure 7.20b it becomes clear, that the linear increase of the strain amplitude εampl

with the stress amplitude qampl, which was measured in the tests, is reproduced well by

the constitutive equations and the sets of constants in Table 7.2. In a similar manner

also the first two cycles of the triaxial tests with a variation of the initial density ID0

(Section 5.2.3), the average mean pressure pav (Section 5.2.4.1) and the average stress

ratio ηav (Section 5.2.4.2) were re-calculated. The q-ε1-curves and an illustration of the

strain amplitude εampl as a function of the respective varied parameter are given in Figure

7.21.

The increase of the strain amplitude with the void ratio (Figure 7.21b) and the decrease of

εampl with ηav (Figure 7.21f) is reproduced correctly. The increase of the strain amplitude

with increasing average mean pressure for ζ = qampl/pav = constant is overestimated

(Figure 7.21d). While in the tests Ghyst ∼ (pav)0.75 was measured, the calculations with

the OV (set of constants I in Table 7.2) deliver Ghyst ∼ (pav)0.47. For the MV (set of

constants II in Table 7.2) even Ghyst ∼ (pav)0.29 is obtained due to the larger value of the

material constant n of the hypoplastic model.
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Another problem becomes clear if the curves of the volumetric strain with the deviatoric

stress in Figure 7.22 are considered. In the calculations with the OV (Figure 7.22a) a

contractancy was obtained during unloading. This is definitely false. Calculations with

the MV (Figure 7.22b) delivered more realistic q-εv-hystereses with a dilatancy during

unloading.
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Figure 7.22: q-εv-hystereses for different stress amplitudes qampl, calculated a) with the

OV and set of constants I in Table 7.2 and b) with the MV and set of constants II in

Table 7.2

Figure 7.23 demonstrates by means of calculations with the MV and the set of constants

II in Table 7.2, that the fitting of the material constants to the test data of the amplitudes

of the total strain εampl(qampl) leads to a slight underestimation of the deviatoric strain

amplitudes εampl
q (qampl). The volumetric strain amplitudes εampl

v (qampl) are overestimated.

Since ε̇acc ∼ (εampl)2 holds, the latter is of minor importance as long as the total strain

amplitudes εampl are predicted correctly.

In Section 5.2.4.1 it was demonstrated by means of RC test data, that the exponent k

of the pressure-dependent shear stiffness Ghyst ∼ (pav)k (here the exponent is denoted as

k in order to distinguish it from the hypoplastic material constant n) increases with the

shear strain amplitude γampl. In calculations with different average mean pressures pav

and ratios ζ = qampl/pav it was checked, if these experimental observations are reproduced

by the constitutive equations. Figure 7.24 shows calculations with the OV and the set of

constants I in Table 7.2. The calculations did not agree with the test data. Even a slight

decrease of the exponent k with increasing amplitude was obtained. Similar results were

attained with the MV.
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For a reliable prediction of settlements with an explicit accumulation model, the accurate

estimation of the strain amplitude in the implicit cycles is of high importance. The

remarks in this section reveal that the recent formulation of the intergranular strain has

to be improved. This should be one of the aspects of the continuation of this work.

Since the q-εv-hystereses are described more realistically, the modified version (MV) of

the hypoplastic model was preferred in the FE calculations presented in Chapter 8.



Chapter 8

FE calculations with the

accumulation model

8.1 Implementation

The accumulation model presented in Chapter 7 was implemented into the FE program

ABAQUS as a Subroutine UMAT for user-defined materials. This work was done by A.

Niemunis.

8.1.1 Modes of the material routine

The UMAT distinguishes three modes of operation:

1. Implicit mode:

The program control is forwarded to a subroutine, in which the hypoplastic model

with the extension by the intergranular strain is implemented. The implementation

of hypoplasticity is discussed by Niemunis (Section 4.1.3 in [105]). This mode is

used to calculate the initial equilibrium and the first cycle.

2. Recording mode:

Also the recording mode calls the subroutine with the hypoplastic model. During

the calculation, characteristic states of strain are memorized according to selected

criteria (Section 8.1.2). From the recorded strain loop the strain amplitude εampl is

determined at the beginning of the pseudo-creep mode. The recording mode is used

for the calculation of the second cycle and for control cycles.

198
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3. Pseudo-creep mode:

In this mode the explicit calculation of accumulation according to Equation (7.1) is

carried out. Prior to the first increment in this mode the strain amplitude εampl has

to be determined.

The UMAT identifies the appropriate mode for the respective step by the step number

specified in the input file. Exemplary, in Figure 8.1 the assignment of calculation steps

and program modes is given for the calculation of a cyclically loaded shallow foundation.

 first
cycle

recording
   cycle

explicit
 creep

own weight
   of soil + 
  av. load

1 2 3 4 5 6 7 8 9calculation step:

program mode:

σav

σmin

σ

σmax

1 2 3

t

�

Figure 8.1: Assignment of calculation steps and program modes for the calculation of a

cyclically loaded shallow foundation

8.1.2 Recording of states of strain in the recording mode

In order to minimize the memory requirements of a calculation, only characteristic points

of the strain loop are memorized in the recording mode. From these strain points the

amplitude εampl is determined at the beginning of the pseudo-creep mode (Figure 8.2).

Beside the initial strain at the beginning of the implicit cycle, further points are recorded

which fulfill certain criteria. These criteria are

� the change of the direction of the strain path by a certain minimum angle βmin and
� a certain distance rmin to the latest recorded point.

The procedure is explained by means of Figure 8.2. Let ε
l be the latest recorded strain

point, ε
a the actual strain, ε

d = ε
a − ε

l the difference of both strain points and ∆ε the

strain increment from ε
a to the next strain point. Using the directions

~εd =
ε

d

‖εd‖ and ~∆ε =
∆ε

‖∆ε‖ (8.1)
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and the angle between both directions

β = arccos( ~εd : ~∆ε) (8.2)

the strain point ε
a is recorded if both following criteria are simultaneously fulfilled:

β ≥ βmin and ‖εd‖ ≥ rmin

The more stringent the criteria βmin and rmin are chosen, the larger are the number of

recorded strain points and thus the memory requirements and the numerical effort during

the calculation of εampl. If the criteria are chosen too weak, the strain loop is not captured

sufficiently. Section 8.2.3.2 deals with the appropriate choice of βmin and rmin.
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Figure 8.2: Recording of characteristic points of the strain loop if the criteria β ≥ βmin

and ‖εd‖ = ‖εa − ε
l‖ ≥ rmin are fulfilled

8.2 FE calculation of shallow foundations under cyclic

loading

First, the re-calculation of the centrifuge model test of Helm et al. [49] (strip foundation

under cyclic loading, Section 3.4.1.2) is presented in Section 8.2.1. After that, the same

set of material constants was used to calculate boundary conditions deviating from the

centrifuge model test. The influence of several parameters on the accumulation of settle-

ments was studied (Section 8.2.2). Furthermore, in Section 8.2.3 some technical aspects of

an FE calculation with an explicit accumulation model (control cycles, recording criteria,

fineness of the FE mesh, boundaries of discretisation) are discussed.
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8.2.1 Re-calculation of the centrifuge model test of Helm et al.

8.2.1.1 Material constants

In the centrifuge model test of Helm et al. [49] a poorly-graded fine sand (centrifuge fine

sand (CFS), d50 = 0.21 mm, U = d60/d10 = 2.0, %s = 2.66 g/cm3) was used. Its grain

size distribution curve is given in Figure 1 in [49]. The model test documented in [49]

was performed on charge 942d of the sand, while in this work the material constants were

determined using charge 942e (emin = 0.575, emax = 0.908).

The hypoplastic material constants of the sand were determined according to the pro-

cedure described in Section 7.3.1.3. They are summarized in Table 7.2. The material

constants of the intergranular strain were first identified from a fitting to the strain am-

plitudes measured in cyclic triaxial tests (Section 7.3.2.2, set of constants IV in Table 7.2).

However, the re-calculation of the cyclically loaded foundation presented in the follow-

ing exhibited, that this set of material constants overestimates the measured settlement

amplitudes (sampl = 1.3 mm in contrary to the experimental value sampl ≈ 0.8 mm). For

this reason, the constants mR and mT were corrected upwards and the set of constants V

referring to Table 7.2 was used in all following calculations.

The material constants of the CFS for the accumulation model were determined in cyclic

triaxial tests. The validity of the functions fp and fY with Cp = 0.43 and CY = 2.0

was assumed. The constants Ce, CN1, CN2 and CN3 could be derived from six tests

with different stress amplitudes and initial densities (Figure 8.3). The determined set

of constants was summarized in Table 7.1. In the tests on the CFS (d50 = 0.21 mm)

significantly larger accumulation rates were measured than in the tests on the medium

coarse to coarse sand No. 3 (d50 = 0.55 mm) presented in Chapter 5. Thus, the conclusions

of Section 5.2.9 concerning the influence of the mean grain diameter were confirmed.

8.2.1.2 Boundary conditions of the FE calculation and discretisation

The centrifuge model test was re-calculated with following boundary conditions:

� Strip foundation, therefore calculation as a problem with plane deformations

� Dimensions of the test container: width 18.1 m, height 7.3 m (prototype). Using

the symmetry only half of the soil was discretised (9.05 m × 7.3 m, Figure 8.4).

� Foundation: width b = 1.0 m, height h = 0.6 m, depth of embedding t = 0 m

� Material of the foundation: aluminium with weight γ = 27 kN/m3, E = 25.000 MPa

and ν = 0.3
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Figure 8.3: Determination of the material constants of the accumulation model in cyclic

triaxial tests on CFS: a) curves εacc(N), b) confirmation of function fampl, c) function fe,

d) function fN

� Coefficient of friction in the contact between foundation and soil:

µ = tan(2/3ϕP ) = tan(2/3 · 38◦) = 0.47

� Average load σav = 89 kPa, amplitude σampl = 75 kPa (determined from the stress-

settlement-hystereses in Figure 3.40b)

� Freshly pluviated sand, i.e. gA
0 = 0

� Initial density ID0 = 0.9

� Coefficient of lateral pressure K0 = 1 − sin(ϕP ) = 1 − sin(38◦) = 0.38

� Initial value of the intergranular strain: component in the vertical direction h11 = R

due to pluviation, all other components zero

� Initial value of back polarization π: A vertical polarization stemming from pluvia-

tion is assumed, i.e. the calculation starts with fπ = 1
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The FE discretisation with four-nodal CPE4 elements (linear shape functions, full inte-

gration) is depicted in Figure 8.4. Remarks on the influence of the fineness of the mesh

and the element type follow in Section 8.2.3.

As the results from the centrifuge model test, the curve of the residual settlement with

the number of cycles (Figure 8.5) and the settlement amplitude sampl ≈ 0.8 mm (from the

stress-settlement-hystereses in Figure 3.40b) are obtained. In Figure 8.5, the settlement

in the model test does not contain the settlement due to the self-weight of the foundation.

In the centrifuge model test, a settlement of 2.4 cm remained after the first cycle. After

105 cycles, a settlement of 7.3 cm was measured.

8.2.1.3 Results

Figure 8.5 presents the good congruence of the settlement curves s(N) in the re-calculation

and in the centrifuge model test. The settlement due to the self-weight of the foundation

(approx. 0.4 cm) was subtracted from the settlements in the re-calculation. The implicit

model predicts a slightly larger settlement (s = 2.8 cm) than it was measured in the model

test (s = 2.4 cm). The amplitude of settlement in the re-calculation amounted sampl = 0.86

mm. Thus, it was somewhat larger than the experimental value (sampl ≈ 0.8 mm). The

calculated settlement after 105 cycles (s = 6.8 cm) lay slightly below the final settlement

in the model test (s = 7.3 cm). The fields of the strain amplitude εampl and the vertical

displacement (including the settlement due to the self-weight of the foundation) are shown

in Figure 8.6. It has to be critically annotated, that in contrary to the observations in the

centrifuge model test (Figure 3.40c), a bulging of the soil surface beneath the foundation

was not obtained in the FE calculation (Figure 8.6b). Some discrepancies between the

FE results and the model test may result from general disadvantages of centrifuge model

tests (e.g. parasitic vibrations).

8.2.2 Settlement prognoses for other boundary conditions

With the set of material constants of the fine sand (set of constants V in Table 7.2),

settlement prognoses for the strip foundation under cyclic loading were established for

boundary conditions, which deviate from those of the centrifuge model test of Helm et

al. [49]. The variables of the soil (initial density ID0, coefficient of lateral earth pressure

K0, historiotropic variable gA
0 ), the loading of the foundation (average value σav, amplitude

σampl) and the geometry of the foundation (depth of embedding t, width b) were varied.

Beside the strip foundation also the influence of the shape of the foundation was studied

in calculations of shallow foundations with a quadratic or circular cross section.
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8.2.2.1 Influence of the initial density

The initial density was varied within 0.5 ≤ ID0 ≤ 0.9 in five calculations. Accordingly, the

weight of the soil and thus the initial vertical stress were different. The coefficient of lateral

earth pressure K0 = 0.38 was kept constant (and not varied according toK0 = 1−sin(ϕP ))

in order to study exclusively the influence of the density. As expected, Figure 8.7 shows

an increase of the settlement in the first cycle and the accumulation of settlements during

the subsequent cycles with decreasing initial density. The latter is due to the void ratio-

dependence of the accumulation rate (→ increase of the function fe of the accumulation

model with e). Another reason is the increase of the amplitudes of strain or settlement
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with decreasing ID0 (Figure 8.7, → larger fampl).
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Figure 8.7: Influence of the initial density ID0 on the accumulation of settlements

8.2.2.2 Influence of the coefficient of lateral earth pressure

Coefficients of lateral earth pressure 0.2 ≤ K0 ≤ 1.0 were tested in five calculations.

Figure 8.8 shows the decrease of the static settlements and the rates of settlement during

cyclic loading with increasing K0. Since the vertical stresses due to the self-weight of

the soil remain constant, the lower rates can be attributed to an increase of the average

mean pressure (→ smaller fp) and a reduction of the deviatoric stress q and thus the

stress ratio η = q/p (→ smaller fY ). Also the smaller settlement or strain amplitudes for

the larger coefficients K0 (→ smaller fampl) play a role. However, with decreasing stress

ratio ηav also the volumetric portion of the accumulation rate (densification) grows and

the rate of shear deformation declines. According to the Jaky formula K0 = 1− sin(ϕP ),

the reduction of the peak friction angle ϕP with decreasing ID and the corresponding

increase of K0 lead to a reduction of the accumulation rate. This moderately counteracts

the increase of the accumulation rate with decreasing initial density (Figure 8.7).

8.2.2.3 Influence of the historiotropy

Figure 8.9 makes clear, that the initial value of the historiotropic variable gA
0 significantly

influences the settlement curves. For large initial values of gA
0 the portion ḟA

N of the

accumulation rate (see Table 7.1), which depends on the historiotropic variable, becomes

negligible. The basic rate ḟB
N , which is independent of N or gA, becomes dominant. The
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settlement s then increases almost linearly with N . In a diagram with semi-logarithmic

scale (Figure 8.9) bent curves are obtained. Thus, the shape of the curves measured in

situ depends strongly on the historiotropy of the soil.

8.2.2.4 Influence of the loading

Figure 8.10 presents calculations, in which the load, analogously to the tests of Hettler

([52, 53, 54], Section 3.4.1.1), oscillated between σmin = 0 and different maximum values

σmax. From Figure 8.10a the increase of the settlement after the first cycle, the amplitude

of settlement sampl and the rate of settlement in the subsequent cycles with increasing σmax

is obvious. Figure 8.10b confirms (at least approximately) the observations of Hettler,

that the curves s(N) are parallel in the double-logarithmic scale (compare Figure 3.37).

Figure 8.11 contains FE calculations with different average values 50 kPa ≤ σav ≤ 200

kPa and amplitude ratios 0.25 ≤ σampl/σav ≤ 1.0. In Figure 8.11a the total residual set-

tlement after 105 cycles is depicted. In Figure 8.11b the settlement at the end of the first

cycle sstat + s1 was subtracted. The increase of the accumulation of settlement with the

square of the amplitude ratio σampl/σav for σav = constant, which was already reported

by Holzlöhner ([56], Section 3.4.1.1) and could also be derived from the tests of Laue

([82], Figure 3.39b), is confirmed by the data in Figure 8.11b. The main reason is the al-

most linear increase of the strain amplitude (compare sampl) with σampl and the quadratic

amplitude-dependence of the accumulation rate (→ function fampl). Furthermore, Figure

8.11 shows, that for a constant amplitude ratio σampl/σav the rate of accumulation in-

creases with increasing average load σav. This also agrees with observations of Holzlöhner
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[56] and Laue [82]. It is caused by larger strain amplitudes (compare sampl → larger fampl)

and larger stress ratios ηav = qav/pav (→ larger fY , but also smaller volumetric component

of m). The increase of the average mean pressure, which results in a reduction of the rate

of accumulation (→ smaller fp), counteracts.

In Figure 8.12, calculations with identical amplitudes σampl (and not σampl/σav = constant)

and different average loads 50 kPa ≤ σav ≤ 200 kPa are compared. For σampl = constant

the residual settlement after 105 cycles increases with σav (Figure 8.12a). However, this

is due to the larger deformations during the monotonic loading up to the maximum load
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whereas the rate of settlement accumulation during the subsequent cycles decreases with

σav (Figure 8.12b). This can be attributed to a reduction of the strain amplitude with

σav due to the stress-dependence of the stiffness (compare sampl → smaller fampl).
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Figure 8.12: Settlements under cyclic loading with different average values σav and am-

plitudes σampl = 25 kPa or 50 kPa: a) total settlement after 105 cycles, b) accumulated

settlement during the cycles with N > 1

8.2.2.5 Influence of the depth of embedding

Figure 8.13a presents FE results for strip foundations with different depths of embedding

0 m ≤ t ≤ 4 m. In these calculations, the soil was discretised up to a depth of 15 m

below the surface. In this way an influence of a too small distance between the base of

the foundation and the lower model boundary should be prevented.

For an identical loading (σav = 200 kPa, σampl = 150 kPa, Figure 8.13a), the settlement

after the first cycle and the amplitude of settlement sampl decrease with increasing depth

of embedding. During the subsequent cycles, the accumulation of settlements is smaller

with increasing depth of embedding (Figure 8.13a). This is partly caused by the decrease

of the strain amplitudes with t (compare sampl → smaller fampl). Another reason is the

larger stress in the soil below the base of the foundation resulting from the self-weight of

the foundation and the soil beside the foundation (→ smaller fp).

In the calculations presented in Figure 8.13b, the ratio of the stress in the base of the

foundation (including the self-weight σSW of the foundation) σSW + σav and the bearing

capacity σBC was kept constant. Also the same amplitude ratio σampl/(σSW + σav) was

chosen in each calculation. The values of σBC were computed according to DIN 4017.
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t [m] 0 1 2 3 4

σBC [kPa] 625 1442 2258 3075 3891

Table 8.1: Bearing capacity for different depths of embedding t according to DIN 4017

They are summarized in Table 8.1. Under such loading, the accumulation of settlement

runs faster with increasing depth of embedding (Figure 8.13b). The effect of the larger

strain amplitudes (compare sampl → larger fampl) and the larger stress ratios ηav = qav/pav

(due to the increase of σav → larger fY , but smaller volumetric component of m) prevails

over the influence of the larger average mean pressure (→ smaller fp). Due to the increase

of σmax = σav + σampl, the settlements after the first cycle increase with t anyway. Laue

[82] reported a smaller accumulation of settlements with increasing depth of embedding

at constant values of σav/σBC and σampl/σav. This could not be confirmed by the FE

calculations.

8.2.2.6 Influence of the width of the foundation

The influence of the width of the strip foundation for identical soil pressures becomes

clear from Figure 8.14. In the FE calculations, the width of the foundation was varied in

the range 1 m ≤ b ≤ 4 m. For an identical loading σav ± σampl, the settlement at the end

of the first cycle, the amplitude of settlement sampl and the rate of settlement accumu-

lation during the subsequent cycles grow with increasing b. For identical soil pressures,
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Raymond & El Komos ([126], Section 3.4.1.1) observed a decrease of the accumulated

settlements with increasing width of the foundation. As expected, these findings could

not be confirmed by the FE calculations. If the settlements are plotted versus the width

of the foundation and a double-logarithmic scale is used (Figure 8.14b), linear curves are

obtained for the settlement at the end of the first cycle sstat +s1 and (approximately) also

for the final settlement s(N = 105), i.e. s ∼ bn holds. For sstat + s1 an exponent n = 0.53

was determined, which coincides with the proposal s ∼
√
b in the literature (Burland et

al. [15], Holzlöhner [57]). For s(N = 105) the smaller exponent n = 0.41 was obtained,

since the rate of settlement during the cycles with N > 1 increases less strongly with

increasing b than the settlement sstat + s1 (Figure 8.14b).
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Figure 8.14: Influence of the width b of the strip foundation for identical soil pressures

From Figure 8.14 it can be seen, that a doubling of the amplitude of settlement sampl due

to an increase of the width of the foundation b from 1 m to 4 m does not lead to a four

times (→ square function fampl) larger accumulated settlement. This can be explained

with the distribution of the strain amplitude εampl in the half space. The strain amplitudes

directly below the foundation are almost identical for b = 1 m and b = 4 m. However,

the decay of εampl with the depth becomes slower with increasing width of the foundation

due to the larger penetration of the load. This leads to larger settlement amplitudes, but

due to ε̇acc ∼ (εampl)2, the effect on the accumulation rate is less pronounced. Niemunis et

al. [109] already pointed out that, concerning the resulting settlements, a static loading

has a larger range than a cyclic loading.

Next, the case, that a uniform load of a certain magnitude composed of a static (F av) and

a cyclic portion (F ampl) has to be carried by a strip foundation, is considered (Figure 8.15).
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An increase of the width of the foundation reduces much more effectively the settlements

resulting from cyclic loading than those due to static loading, i.e. the settlements during

the cycles with N > 1 decay much faster with increasing b than the settlements sstat + s1

(Figure 8.15b). Though the average soil pressure is lower for the larger widths of the

foundation (→ larger fp), the simultaneous decrease of the strain amplitude due to smaller

stress amplitudes has much more effect on the settlement rate (due to ε̇acc ∼ (εampl)2).

8.2.2.7 Summary of the FE parametric studies on strip foundations

Table 8.2 summarizes the effect of the parameters varied in the FE calculations on the

settlement after the first cycle sstat +s1, the amplitude of settlement sampl, the settlements

during the subsequent cycles s(N = 105) − (sstat + s1) and the total residual settlement

s(N = 105) after 105 cycles. The effect of an increase (↑) of the respective parameter on

the settlements (↑: increase, ↓: reduction) is indicated.

If a given uniform load F av ± F ampl has to be carried by a strip foundation and the

geometry is fixed (e.g. standardized statics), the settlements resulting from the cyclic

loading can be reduced by a vibratory compaction of the soil. This causes an increased

density ID0 but also induces a cyclic preloading gA
0 and eventually an increase of the

coefficient of lateral earth pressure K0. All three effects lead to a decrease of the rate of

accumulation. If the geometry of the foundation is variable, the depth of embedding or

the width of the foundation can be enlarged. The increase of the width of the foundation

reduces much more effectively the settlements due to cyclic loading than those due to

static loading. If only the cyclic portion of the load F ampl is fixed (e.g. in the case of wind
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Varied Constant parameter sstat sampl s(N=105) s(N=105)

parameter +s1 −(sstat+s1)

ID0 ↑ σav, σampl, b, t, K0, g
A
0 ↓ ↓ ↓ ↓

σmax ↑ σmin = 0, b, t, ID0, K0, g
A
0 ↑ ↑ ↑ ↑

σampl/σav ↑ σav, b, t, ID0, K0, g
A
0 ↑ ↑ ↑ ↑

σav ↑ σampl/σav, b, t, ID0, K0, g
A
0 ↑ ↑ ↑ ↑

σav ↑ σampl, b, t, ID0, K0, g
A
0 ↑ ↓ ↓ ↑

b ↑ σav, σampl, t, ID0, K0, g
A
0 ↑ ↑ ↑ ↑

b ↑ F av, F ampl, t, ID0, K0, g
A
0 ↓ ↓ ↓ ↓

t ↑ σav, σampl, b, ID0, K0, g
A
0 ↓ ↓ ↓ ↓

t ↑ σav/σBC, σampl/σav, b, ID0, K0, g
A
0 ↑ ↑ ↑ ↑

K0 ↑ σav, σampl, b, t, ID0, g
A
0 ↓ ↓ ↓ ↓

gA
0 ↑ σav, σampl, b, t, ID0, K0 - - ↓ ↓

Table 8.2: Summary of the results of the FE calculations on strip foundations under cyclic

loading: influence of several parameters on the settlements

or wave loads) and the geometry of the rising construction has to be designed, it should

be considered, that for F ampl = constant a larger self-weight of the building (larger F av)

leads to larger settlements from the static load. In contrary, the settlements during the

cyclic loading are smaller with increasing F av.

8.2.2.8 Influence of the shape of the foundation

Beside the strip foundations discussed above also single foundations with a circular and

a quadratic cross section were calculated. Figure 8.16 shows the settlement curves in the

FE calculations with a three-dimensional discretization of the boundary value problem

(element type C3D8).

For a constant area of the foundation, the shape of the cross-section is of minor impor-

tance. The settlements of the quadratic foundation are slightly lower than those for the

circular one (in particular during the implicit calculation of the first two cycles). This can

be explained by the larger portion of the external load, which is transmitted to the soil via

shear stresses along the depth of embedding (perimeter of a square =
√

4/π × perimeter

of a circle). Thus, smaller soil pressures result at the base of the foundation. The circular
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foundation can also be calculated as an axisymmetric problem (element type CAX4). The

differences in the settlement curves of the axisymmetric and the 3D calculation (Figure

8.16) are probably due to a slightly different discretisation.

8.2.3 Technical remarks

8.2.3.1 Control cycles

Implicitly calculated control cycles can be interposed into the FE calculation in order to

update the field of the strain amplitude. This field may change due to a densification or a

re-distribution of stress. The effect of control cycles was studied for the strip foundation

and different initial densities 0.3 ≤ ID0 ≤ 0.9. In Figure 8.17 the results of calculations

with control cycles after N = 10, 102, 103 and 104 cycles are compared with the settlement

curves from calculations without control cycles. The control cycles reduce the amplitudes

and the settlements only for loose soil (ID0 ≤ 0.5). However, also for ID0 = 0.3 the

improvement of the solution (reduction of the settlement at N = 105) amounts only 5 %

with respect to the settlement without control cycles. In contrast, a significantly larger

numerical effort (factor 3 to 4 in the case of four control cycles) is necessary. Thus, the

benefit of control cycles for simple boundary value problems is questionable. However,

control cycles may have advantages for more complex boundary value problems with a

larger re-distribution of stress.
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8.2.3.2 Criteria βmin and rmin for the recording of strain points

The criteria βmin and rmin specify which states of strain are memorized during the implicit

calculation in the recording mode (Section 8.1.2). In FE calculations of the cyclically

loaded strip foundation, the values were varied in the range 10◦ ≤ βmin ≤ 40◦ and 2·10−6 ≤
rmin ≤ 10−4. The aim of these calculations was to find out, how weak the criteria βmin and

rmin can be chosen without losing much accuracy of the solution. Figure 8.18 presents the

residual settlements after N = 105 cycles. Since the strain loops of this boundary value

problem are almost one-dimensional (in-phase) and thus the strain path has only two

inflexion points, the choice of the angle βmin does hardly influence the calculation (Figure

8.18). In the range rmin ≤ 10−5 the choice of rmin does not affect the accumulation

of settlement. If a larger value of rmin is chosen, only the initial point is recorded for

strain loops with an amplitude smaller than rmin and thus the amplitude is calculated as

εampl = 0. For this reason, the residual settlement is reduced with increasing rmin. On

the basis of Figure 8.18, the usage of βmin = 10◦ and rmin ≤ 10−5 is recommended.

8.2.3.3 Element type

Niemunis et al. [111] suggested to use eight-nodal finite elements with reduced integration

(four integration points, element type CPE8R) in order to keep the unintentional accu-

mulation of self-stresses in an element during the explicit calculation small. However, in
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the case of the considered boundary value problem and the chosen discretisation (mesh

according to Figure 8.4) comparative calculations with CPE4 (linear shape functions, full

integration), CPE8 (quadratic shape functions, full integration) and CPE8R elements did

reveal no influence of the element type on the settlements (Figure 8.19). The usage of

CPE4 elements is thus thought to be sufficient.
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Figure 8.19: Influence of the element type on the FE calculation

8.2.3.4 Mesh dependence

In addition to the mesh shown in Figure 8.4, also a finer discretisation with 16 elements

under the half width of the foundation and two coarser meshes with 4 or 2 elements on

the length b/2 were tested (Figure 8.20a). The results of the calculations are illustrated

in Figure 8.20b. They reveal that the meshes Nos. 1, 2 and 3 with 16, 8 or 4 elements

on b/2 deliver similar amplitudes of settlement sampl and curves s(N). For the coarsest

mesh (2 elements on b/2) a smaller settlement amplitude and lower residual settlements

were obtained. Thus, a discretisation with 4 elements on the length b/2 is sufficient.

Adequate fine discretisations with rectangular elements delivered the same results as the

discretisations 1 to 4 in Figure 8.20a with the shape of spider webs. Therefore, they are

equivalent but easier to generate.

8.2.3.5 Region to be discretised in the case of a half space with infinite di-

mensions

Due to the square dependence of the rate of accumulation on the strain amplitude, the

settlements resulting from a cyclic loading decay faster with depth than the settlements
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Figure 8.20: Influence of the fineness of the mesh on the FE calculation

due to static loads (see also Section 8.4). Thus, the static loading is decisive concerning

the boundaries of the discretised area. This could be confirmed in calculations (not shown

here) of the strip foundation with different dimensions of the discretized region of the soil.

Concerning the boundaries of discretisation, respective recommendations for monotonic

loads can be adopted.

8.3 FE calculation of a pile under cyclic axial loading

In FE calculations of a drilled pile (diameter d = 1 m, length l = 20 m) under cyclic axial

loading, the development of the settlements and the stresses was studied. The sand had

an initial density of ID0 = 0.7 and the historiotropic variable was gA
0 = 0.

The pile and the surrounding soil were discretised as an axisymmetric problem with

CAX4 elements (Figure 8.21). 100 elements were arranged along the shaft of the pile.

Four elements were located under its bottom. In the contact between soil and pile, friction

contacts were used. Shear stresses can be transmitted by these contacts up to τ = µ σN

(σN : normal stress on the contact). Larger shear stresses cause sliding. The coefficient of

friction is treated as a constant. At present, a possible degradation of µ with the number

of cycles N (e.g. due to a breakage of grains in the contact) cannot be considered. A

respective extension by a user-defined contact with an implementation of a dependence

µ(N) (Subroutine UINTER in ABAQUS) is planned for the future. The calculations were

performed with a coefficient of friction µ = tan(ϕ/2) = tan(38◦/2) = 0.34. For drilled
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Figure 8.21: FE discretisation of the drilled pile as an axially symmetric problem

piles, this value is realistic due to the production process. Comparative calculations

were performed with a higher coefficient of friction µ = tan(ϕ) = 0.78. The MV of the

hypoplastic model with the set of constants V in Table 7.2 was used.

First, the load-settlement-curves s(F ) for the two coefficients of friction were generated

by calculating a monotonic loading of the pile. The curves are shown in Figure 8.22.

According to DIN 4014, the bearing capacity was defined as the load at a settlement-to-

diameter ratio of s/d = 0.1. For µ = 0.34 a bearing capacity of Ql,c = 3.5 MN and for

µ = 0.78 a value of Ql,c = 5.9 MN was determined.

The pile under cyclic axial loading was calculated with the minimum and maximum loads

summarized in Table 8.3. For both coefficients of friction µ calculations with a minimum

load Fmin = 0, 1 Ql,c and maximum loads Fmax = 0.4 Ql,c or 0.7 Ql,c were conducted.

Furthermore, calculations with identical minimum and maximum loads (Fmin = 0.60 MN,

Fmax = 2.36 MN or 4.12 MN) were performed.

A typical field of the strain amplitude εampl (calculation No. 3) is shown in Figure 8.23a.

The larger strain amplitudes concentrate within a small zone along the shaft and below

the base of the pile. The settlements after 105 cycles are depicted in Figure 8.23b.

The development of the settlement with increasing number of cycles is presented in Figure

8.24. As expected, for Fmin = constant, the settlement after the first cycle and the

settlement rates during the subsequent cycles increase with increasing maximum load

Fmax. Furthermore, for identical absolute values of Fmin and Fmax, an increase of the
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Coefficient of friction µ 0.34 0.78

Calculation No. 1 2 3 4 5 6

Minimum load Fmin/Ql,c 0.10 0.10 0.17 0.17 0.10 0.10

Fmin [MN] 0.35 0.35 0.60 0.60 0.60 0.60

Maximum load Fmax/Ql,c 0.40 0.70 0.67 1.17 0.40 0.70

Fmax [MN] 1.41 2.47 2.36 4.12 2.36 4.12

Table 8.3: FE calculations of a drilled pile under cyclic axial loading
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Figure 8.22: Load-settlement-curves for coefficients of friction µ = 0.34 and µ = 0.78

resulting from a FE calculation of a monotonic pile loading; defining the cyclic loading

settlement with a decreasing coefficient of friction µ could be detected (compare Figure

8.24a for µ = 0.34 and Figure 8.24b for µ = 0.78). The increase of ṡ with decreasing

coefficient of friction µ is due to a larger portion of the external load which is carried

by the base of the pile. This causes larger strain amplitudes below the base of the pile,

which manifests itself in larger amplitudes of settlement. If for different coefficients of

friction µ the ratios Fmin/Ql,c and Fmax/Ql,c are identical, the residual strains after the

first cycle, the amplitudes of settlement and the settlements after 105 cycles do not differ

much (Figure 8.24).

Figure 8.25 confirms observations in model tests in the literature (Section 3.4.2), that

the normal stress σN on the pile shaft decreases during cyclic loading. For a constant

minimum load this reduction of σN with N runs the faster the larger the maximum load

is chosen (compare Figures 8.25a and 8.25b). After a large number of cycles an almost

constant distribution of the normal stress with depth establishes (Figure 8.25b). In Figure

8.25b the strong fluctuation of σN over depth for the larger numbers of cycles is probably
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Figure 8.23: Fields a) of the strain amplitude εampl and b) of the vertical displacement

after 105 cycles (calculation No. 3 referring to Table 8.3)
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Figure 8.24: Settlement of the pile for different loadings and coefficients of friction µ

due to numerical reasons.

The development of the shear stresses carried by the pile shaft and the normal stresses in

the contact at the pile base during the first two cycles calculated implicitly is illustrated

in Figure 8.26 (for calculation No. 3 referring to Table 8.3). The self-weight of the pile

causes initially small shear stresses (state 1 in Figure 8.26a). When the loading is raised

to F av, the maximum possible shear stress τ = µ σN (compare σN in Figure 8.25a) is

mobilized almost along the whole length of the pile (state No. 2 in Figure 8.26). The

subsequent additional loading from F av to Fmax cannot be carried by shaft friction. It
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for Fmin = 0.17 σl and two different maximum loads Fmax (calculations Nos. 3 and 4

referring to Table 8.3 with µ = 0.34)

leads to a significant increase of the base pressure (Figure 8.26b, state No. 3). The

following unloading to Fmin results in negative shaft friction in the upper half of the pile

(state No. 4 in Figure 8.26). When the average load F av has been reached again (state

No. 5 in Figure 8.26), the shear stresses are considerably smaller and the base pressure is

significantly larger than at F av prior to the application of the first cycle. In the second

cycle (states Nos. 6 to 8 in Figure 8.26), from which the strain amplitude is gained, the

distributions of stress do hardly change compared to the corresponding states of the first

cycle.

The decrease of the shear stresses carried by the pile shaft and the increase of the base

pressure resulting from the implicit calculation are almost completely reversed in the

explicit calculation of the first 10 cycles (Figure 8.27). During the subsequent cycles

N ≥ 10, similar to several model tests in the literature (Section 3.4.2, see e.g. Figure

3.43a after Le Kouby et al. [83]), a decrease of the shear stresses carried by the pile

shaft and an increase of the base pressure with the number of cycles could be determined

(Figure 8.27). Due to the development of the normal stresses σN acting on the pile shaft

(Figure 8.25), a constant distribution of shear stress over depth establishes with increasing

number of cycles. In Figure 8.27a this can be clearly seen for the upper 8 m of the pile.

Such homogenisation of the profile τ(z) has already been reported by Schwarz [138] (see

Figure 3.45).

The change of the stresses on the pile, i.e. the decrease of the shear stresses acting on

the pile shaft and the increase of the base pressure with the number of cycles N becomes

even clearer from Figure 8.28c. Figure 8.28c shows the development of the resulting forces
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pressures during 105 cycles in the explicit calculation (No. 3 referring to Table 8.3)

of the shear stresses acting on the pile shaft and the base pressure as a function of N

for calculation No. 3. The other diagrams in Figure 8.28 contain analogous illustrations

for the five other calculations. For the larger load amplitudes (Fmax ≥ 0.67 Ql,c, Figure

8.28b,c,d,f) an increase of the resulting force of the base pressure with increasing number

of cycles N was always observed while the resulting force of the shear stresses carried

by the pile shaft decreased simultaneously. Another behaviour could be detected for the

smaller amplitudes (Fmax = 0.4 Ql,c). In the case of the coefficient of friction µ = 0.78

(Figure 8.28e), the shear stresses acting on the pile shaft increased with N while the

base pressure declined. With increasing number of cycles N the portion of the external
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load carried by shaft friction (especially in the lower quarter of the pile) increased and the

portion carried by the base decreased. For µ = 0.4 (Figure 8.28a), an increase of the shear

stresses acting on the pile shaft and an accompanying decrease of the base pressure was

also observed up to N = 103. However, this tendency was reversed for larger numbers of

cycles. The calculations in Figure 8.28 reveal, that the development of the stresses acting

on a pile under cyclic axial loading depends on the magnitude of the load amplitude and

the coefficient of friction in the contact pile - soil.

In general, it has to be annotated that the rate of stress accumulation depends on the

choice of the elastic stiffness E in Equation (7.1). Respective remarks were given in Section

7.2.3.

8.4 Other applications of the accumulation model

The accumulation model was used to calculate other boundary value problems, which are

briefly summarized in the following. Details can be read in the respective publications

(Niemunis et al. [109], Niemunis et al. [113]) or diploma theses (Keßler [72], Canbolat

[16]).

Niemunis et al. [109] calculated the differential settlements of two neighboured founda-

tions. The spatial distribution of the void ratio e(x) was stochastically generated (with

three different correlation lengths). 30 different fields e(x) (see an example in Figure

8.29a) were tested. Let sl and sr be the settlements of the left and the right foundation,

respectively (Figure 8.29a). The differential settlement ∆s = |sl − sr| was divided by the

mean value of the settlement s̄ = (sl+sr)/2. The related differential settlement (∆s/s̄)stat

due to the static loading up to σav was compared to the additional differential settlement

(∆s/s̄)cyc during the subsequent 105 cycles. Independently of the correlation length it

was detected, that the differential settlement stemming from the cyclic loading (∆s/s̄)cyc

was approximately three times larger than that resulting from static loading (∆s/s̄)stat

(Figure 8.29b). This can be attributed to the fact that the settlement due to monotonic

loading is proportional to the load, while the accumulation rate under cyclic loading is

proportional to the square of the strain amplitude, i.e. approximately proportional to the

square of the load. Therefore, the cyclic loading has a smaller range than the monotonic

loading. In the larger range of the monotonic loading a compensation of inhomogeneities

of the field e(x) is more likely than in the smaller range of the cyclic loading near the

foundation. The correlations given in Figure 8.29b could be practically used in order to

estimate the differential settlement due to cyclic loading from the differential settlements
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during the application of the static loads (e.g. during the construction process, due to

the increase of the self-weight).
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Figure 8.29: FE calculations with stochastically fluctuating fields of the initial void ratio:

a) example of a field e(x), b) differential settlement due to cyclic loading as a function of

the differential settlement due to static loading

Keßler [72] used the accumulation model to simulate a vibratory compaction in a certain

depth (the pulling-out of the vibrator was not modelled yet) for different initial densities

and frequencies (Figure 8.30). In that case, the implicit steps were calculated dynamically.

Canbolat [16] determined the settlements of the abutment of a bridge (so called ”Hünxer

Brücke” leading over the Wesel-Datteln waterway) under 50 years of traffic loading. The

traffic loads were modelled using the concept for packages of cycles mentioned in Section

5.2.7.

The accumulation model was also used by Niemunis et al. [113] for the prognosis of excess

pore water pressures and settlements of a water-saturated sand layer under earthquake

loading. This problem was studied using the Finite Difference Method. A special numer-

ical strategy was tested (Figure 8.32). The fast processes (propagation of shear wave)

were decoupled from the slow processes (accumulation of the mean value of excess pore

water pressure) for one period T of the harmonic excitation of the rock bed.

The dynamic calculation of the shear wave propagation in the sand layer during the first

period T of excitation was performed with ”frozen” values of the slowly changing variables

σ
′av (average effective stress), uav (average excess pore water pressure) and eav (average

void ratio). At the end of the period, the change of σ
′av, uav and eav during T was

calculated by means of the accumulation model and the strain amplitude received from

the dynamic calculation. Afterwards, the values were again modified in a calculation



8.4. Other applications of the accumulation model 225

void ratio

e0 = 0.715
ID0 = 0.4
N = 4,000

infinite elements

vibrator

Figure 8.30: FE calculation of a vibratory

compaction after Keßler [72]

0 2 4 6 8 10
4

6

8

10

s 
[c

m
]

Number of cycles N [106]

s

Packages large       small

Packages small       large

Settlement s [m]

Figure 8.31: FE calculation of the settle-

ments of a bridge after Canbolat [16]

0 T 2T 3T

0 1 2 3

Time t

Number of
cycles N

dynamic analysis
(elastoplastic wave)

explicit calculation
of accumulation

� 'av, uav, eav 
 = constant

time increments 
�

t << T

vs

�
v0

u

calculation of
consolidation

�
v0

u
0 T 2T 3T

Time t

1

2

3

4

'

'

Figure 8.32: Numerical strategy in a calculation of the pore water pressure accumulation

in a water-saturated sand layer under earthquake loading after Niemunis et al. [113]

of the dissipation of the pore water pressure during T (consolidation). The dynamic

calculation of the wave propagation during the second period of excitation followed using

the modified values of σ
′av, uav and eav, and so on. The introduction of special boundary

conditions lead to a reflection of the shear wave at liquefied layers. Figure 8.33 presents

the distributions of the shear strain γ, the shear strain amplitude γampl and the excess

pore water pressure uav with depth z for certain numbers N of the calculated periods

T . Concerning details of the calculations it is referred to [113] or the corresponding oral

presentation [114]. A validation of the results by a comparison with in-situ measurements

has still to be done. It has to be critically remarked, that the shear strain amplitudes

mostly exceed γampl = 10−3 (Figure 8.33). Thus, the amplitudes lay in a range, which,

apart from the experiments presented in Section 5.2.1.2, was scarcely tested up to now.
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Chapter 9

Determination of the historiotropic

variable gA
0

in situ

In Section 5.2.6 it was demonstrated, that the rate of accumulation depends not only

on the state variables void ratio and stress, but also on the historiotropy (also called

”cyclic preloading”), i.e. the fabric of the grain skeleton (arrangement of the contacts,

orientation of the contact normals, coordination number, fluctuation of stress). In the

laboratory depending on the method of specimen preparation, a certain initial fabric

of the soil skeleton is generated. It is changed by a subsequent cyclic loading. The

accumulation rates measured in the laboratory correspond to this special initial fabric.

The fabric of the soil skeleton of a non-cohesive soil in situ results from its sedimentation

and the subsequent cyclic and monotonic loading history. A historiotropy may result

e.g. from seismic activity, from the sedimentation and erosion of superposed layers or

from oscillating ground water levels. Aging phenomena may cause changes of the particle

contacts (e.g. cementation, improvement of interlocking). In general, the fabric of the

soil in situ is unknown and cannot be directly measured.

In the accumulation model described in Chapter 7, fabric effects are summarized in the

scalar historiotropic variable gA. For the freshly pluviated sample in the laboratory the

initial value is gA
0 = 0. Normally, this is not the case for an in-situ soil. Thus, for a

prognosis of accumulation beside an information about void ratio and stress the initial

value gA
0 is required. Since gA is a phenomenological variable, it cannot be measured

directly but has to be determined by means of correlations. In this work, a possible

correlation of gA
0 with the P- and the S-wave velocity was studied. This correlation was

disproved by the experiments presented in Section 9.1. Furthermore, a correlation between

gA
0 and the liquefaction resistance was established (Section 9.2). The practical application

227
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of this correlation needs further studies. Other ideas for a determination of gA
0 are given

in Section 9.3.

9.1 Correlation of the historiotropy with dynamic

soil properties

9.1.1 Motivation

The measurement of wave velocities in laboratory specimens was already discussed in

Sections 3.3 and 4.1.4. In situ wave velocities can be determined by means of seismic

measurements (e.g. cross-hole measurements). The idea was, to collect information about

the historiotropic variable gA
0 from in-situ measurements of the wave velocities.

The secant shear modulus at small strains Ghyst,0 is correlated with the S-wave velocity via

Equation (3.7). It was reported on an increase of Ghyst,0 of non-cohesive soils due to cyclic

loading several times in the literature. Figure 9.1 shows respective RC tests on hollow

cylinder specimens performed by Drnevich & Richart [27]. In comparison to a freshly

pluviated sample they found an increase of Ghyst,0 by up to 300 % due to 2.2 · 107 strain

cycles. An increase of Ghyst,0 due to cyclic loading was pointed out also by Richart [127]

and Shen et al. [148]. However, contradictory to those studies several other researchers

reported, that the secant stiffness at small strains is hardly influenced by a cyclic loading

or by the fabric of the grain skeleton (method of sample preparation) (Alarcon-Guzman

et al. [4], Tatsuoka et al. [157], Lo Presti et al. [90], Teachavoransinskun et al. [159], Li

& Yang [88]). A discussion of these contradictory publications is given by Wichtmann &

Triantafyllidis [183].

Micromechanical considerations support an increase of the dynamic stiffness due to a

regular cyclic loading. As demonstrated in the following, this increase can result from a

change of the geometry of the grain contacts or a reduction of the spatial stress fluctuation.

The stiffness E and the elastic energy We of an elastic contact of two ideal spheres with

identical radii R under the axial force F were derived by Hertz [51]:

E =
3

2

[
2Ḡ

3(1 − ν̄)

] 2

3

σ
1

3 (9.1)

We =
4

8

3

5

[
3(1 − ν̄)

8Ḡ

] 2

3

R
4

3 σ
5

3 (9.2)

with the shear modulus Ḡ and the Poisson’s ratio ν̄ of the sphere material. σ = F/D2

is the stress in the axial direction. Goddard [33] developed formulas for the stiffness and
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the energy of a contact of a sphere and a conus (inclination angle α, see Figure 9.2):

E =

(
Ḡ

1 − ν̄

) 1

2

(
6

πα

) 1

2

σ
1

2 (9.3)

We =
4

3

2

3

[
3(1 − ν̄)

8Ḡ

] 1

2

(πα)
1

2 R3 σ
3

2 (9.4)

Goddard assumed Equation (9.3) to be valid for stresses σ, which do not exceed a tran-

sition stress σ∗. σ∗ can be derived from setting equal Equations (9.1) and (9.3). It is

strongly dependent on α:

σ∗ =
1

96

Ḡ

1 − ν̄
π3 α3 (9.5)

For σ > σ∗ Equation (9.1) holds. This relationship is schematically shown in Figure

9.2. The line F’-F results from Equation (9.1) and S’-S corresponds to Equation (9.3).

Goddard thought of Figure 9.2 as a kind of ”thermodynamic” phase diagram. The curve

F’-F (contact sphere - sphere) represents a stable and the curve S’-S (contact conus -

sphere) a metastable phase. Due to abrasion or a re-orientation of the grains, a vibration

of the grain skeleton may lead to a replacement of ”weak” contacts of the type conus -

sphere by stiffer Hertz contacts (see the vertical arrow in Figure 9.2).

An increase of the stiffness can be also expected due to a reduction of the spatial fluctu-

ation of stress. This is made clear using the simple example of four ideal spheres shown

in Figure 9.3 (Triantafyllidis & Niemunis [165]). In case I the total external force 2F is

carried by a single column of grains. In case II it is equally distributed on both grain
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columns. If Hertz contacts are assumed, the ratio of the stiffnesses is EII/EI = 2
2

3 = 1.58

and for the elastic energies WeII/WeI = 2−
2

3 = 0.63 holds. If one assumes that the grain

skeleton intends to reach a state of minimum energy, a cyclic loading should homogenize

the stress field and thus lead to a larger stiffness. A detailed study of the energy in a

particle assembly for different stress fluctuations using the ”q-model” of Coppersmith [24]

was documented by Triantafyllidis & Niemunis [165]. It has to be critically annotated,

that in cyclic oedometric tests with a recording of the grain impressions at the base of

the specimens by means of a special foil, a homogenization of the stress field due to cyclic

loading could not be verified (Humme [59]).

2F

F F

2F

2F

a) b)

stiffness: EII = 1.58 EI
energy:   WeII = 0.63 WeI

 cyclic
loading

 cyclic
loading

I II

Figure 9.3: Increase of the stiffness and decrease of the elastic energy due to a homoge-

nization of the stress field (reduction of stress fluctuation)

9.1.2 Laboratory tests

A possible correlation of the historiotropy with dynamic soil properties was studied in

several test series. RC tests on cyclically preloaded specimens as well as cyclic triaxial

tests with a measurement of P- and S-wave velocities were performed.

9.1.2.1 RC tests on specimens after a cyclic axial preloading

In a first test series (Wichtmann [175]), specimens of a fine sand (d50 = 0.12 mm, U =

d60/d10 = 1.6) were subjected to a cyclic axial preloading in a load press (Figure 9.4).

While the lateral stress σ3 = 65 kPa was generated by vacuum, the deviatoric stress

was oscillating between qmin = 0 and qmax = 130 kPa. The resulting strain amplitudes

were εampl
1 ≈ 7 · 10−4. The number of preloading cycles was varied. After preloading the
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specimens were built into the RC device and the curves Ghyst(γ
ampl) and D(γampl) were

measured at a mean pressure of p = 100 kPa. Figure 9.4 compares the shear moduli

Ghyst,0 of the preloaded and the non-preloaded specimens. Despite some scatter of the

data no clear correlation between cyclic preloading and Ghyst,0 could be detected. Neither

were the curves Ghyst(γ
ampl)/Ghyst,0 and D(γampl) influenced by the historiotropy [175].
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Figure 9.4: Shear moduli Ghyst,0 after a cyclic axial preloading

Having finished this test series, the question, if the polarization of the testing wave in

comparison to the polarization of the preloading is of importance, arose. In the tests

presented in Figure 9.4, the specimens were preloaded in the axial direction while the

testing wave measured in the RC device was horizontally polarized. Thus, in the next

test series it was studied, if the historiotropy can be better correlated with a testing wave

with identical polarization.

9.1.2.2 RC tests with dynamic torsional preloading (small amplitudes)

In a second test series, specimens with a full cross-section were subjected to a dynamic

torsional preloading in the RC device. In these tests, the direction of preloading and the

polarization of the testing wave were identical. The shear strain amplitude was increased

to a value γampl
prestrain (Figure 9.5) and a definite number of strain cycles was applied. After

certain numbers of cycles a temporary reduction of the amplitude towards γampl ≈ 10−6

was undertaken in order to measure the shear modulus Ghyst,0. After having reached

the maximum number of cycles of the test and after having measured Ghyst,0, the curves

Ghyst(γ
ampl) and D(γampl) were determined also for γampl > γampl

prestrain.

Figure 9.5 shows an example of a test result. After the first reduction of the shear strain
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due to a dynamic torsional preloading, test with Nprestrain = 3 · 106, ID0 = 0.64 and p =

200 kPa

amplitude to γampl ≈ 10−6 the shear modulus Ghyst,0 lay slightly below the initial value

of the freshly pluviated specimen. During the following Nprestrain = 3 · 106 cycles Ghyst,0

remained almost constant. This is confirmed also by Figure 9.6 for tests on fine and

medium coarse sand with different maximum numbers of cycles Nprestrain. The curves

Ghyst(γ
ampl) and D(γampl) measured after preloading show an anomaly at γampl

prestrain (Figure

9.5). Some kind of plateau develops in both curves with the preloading cycles. Similar

test results were already reported by Li et al. [88, 87, 86]. Schanzmann [136] (see also

Wichtmann et al. [179]) proposed a method to quantify these anomalies. He demonstrated

that the magnitude of the plateaus increases with the intensity of preloading, i.e. with

Nprestrain and γampl
prestrain. Furthermore, Wichtmann et al. [179] showed that for an application

of several packages of cycles with different amplitudes γampl
prestrain the sequence of the packages

influences the development of the plateaus. However, a utilization of the correlation of

the historiotropy with the anomalies in the curves Ghyst(γ
ampl) and D(γampl) is difficult,

since these curves cannot be measured in situ. Furthermore, changes of the stress blur

these signs of the historiotropy (Wichtmann & Triantafyllidis [183]).

9.1.2.3 RC tests on hollow cylinder specimens after a cyclic torsional preload-

ing (large amplitudes)

The small changes of Ghyst,0 in the tests presented in the preceding section could be due to

the small preloading amplitudes γampl
prestrain ≤ 10−4 or due to the inhomogeneous distribution

of the shear strain amplitude over the cross-section of the specimen. However, tests similar
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to those in Section 9.1.2.2 on hollow cylinder specimens (more homogeneous distribution

of γampl over the cross-section of the specimen) exhibited similar results as the tests on

full cylinder specimens (Wichtmann & Triantafyllidis [183]). Thus, an influence of the

homogeneity of the distribution of γampl can be excluded.
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Figure 9.7: a) Device for the application of a cyclic torsional preloading with large ampli-

tudes on hollow cylinder specimens, b) Shear moduli Ghyst,0 of hollow cylinder specimens

after cyclic torsional preloading with large strain amplitudes

The hypothesis that the strain amplitudes in the previous tests were too small was

checked in another test series on hollow cylinder specimens. The specimens were sub-

jected to a cyclic torsional preloading in a special device (Figure 9.7a). Large amplitudes

(10−3 ≤ γampl
prestrain ≤ 10−2) were applied with a loading frequency of fB = 0.5 Hz. Differ-

ent numbers of preloading cycles Nprestrain were chosen. After preloading, the specimens

were tested in the RC device. Figure 9.7b shows exemplary the results of the tests with
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γampl
prestrain = 5 · 10−3 (the results for the other tested amplitudes are given by Wichtmann

& Triantafyllidis [183]). Despite the large amplitudes, the shear modulus Ghyst,0 was only

moderately affected by the cyclic preloading. Analogously to Figures 9.5 and 9.6, the

specimens preloaded with Nprestrain = 100 exhibited a smaller shear modulus compared

to the non-preloaded specimens. With increasing number of cycles Nprestrain the values of

Ghyst,0 increased. For Nprestrain = 50,000 all values lay above those of the non-preloaded

specimens. However, relating to the stiffness of the non-preloaded specimens, the increase

of Ghyst,0 amounts 20 % in maximum. Thus, the correlation of the historiotropy with

Ghyst,0 is too weak in order to utilize it for practical purposes.

9.1.2.4 Cyclic triaxial tests with a measurement of P- and S-waves

Beside the RC tests also cyclic triaxial tests with σ3 = constant were performed. The

oscillation of the axial stress σ1 was interrupted after definite numbers of cycles in order

to measure the compressional and shear wave velocities at the average stress σ
av. In this

case, the P-wave and the cyclic preloading had an identical polarization.
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The average stress σ
av, the stress amplitude qampl and the initial density ID0 were varied

from test to test. Although a significant accumulation of residual strains occurred in some

tests (Figure 9.8a shows the axial strain εacc
1 ), hardly any changes of the stiffnesses Es,hyst,0

(Figure 9.8b) and Ghyst,0 (Figure 9.8c) could be observed. The curves in Figures 9.8b and

9.8c were freed from the stiffness increase due to densification by a normalization with the

void ratio function F (e) = (a− e)2/(1 + e) according to Equation (3.5) with a = 1.46 for

Ghyst,0 und a = 2.36 for Es,hyst,0 (Wichtmann & Triantafyllidis [184]). Thus, the P-wave

is similarly unsensitive to the historiotropy as the S-wave.
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Figure 9.9: Change of the intensity of the received signal with the number of cycles for

a constant intensity of the transmitted impulse (cyclic triaxial tests, measurements with

bender elements)

In the case of the measurements of the S wave, a change of the intensity of the received

signal with the number of cycles attracted attention, although the amplitude of the trans-

mitted signal was kept constant. These observations were made for both the shear plate

(SP) and the bender element (BE). Figure 9.9 exemplarily presents the results of a test,

in which the signal intensity increased up to N ≈ 1, 000 and was strongly reduced after-

wards. In contrast, the measurements of the P-wave with the compression element (CE)

exhibited no change of the signal intensity. A detailed description of this topic is given

by Triantafyllidis et al. [166]. The reduction of the signal intensity could be due to an

increase of material damping as a result of cyclic loading (e.g. due to an increase of the
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number of particle contacts). However, also a change of the bedding of the piezoelectric

elements in the surrounding grains could be responsible. The latter one is more likely,

since in the RC tests (Sections 9.1.2.1 to 9.1.2.3) no significant change of the damping

ratio could be detected.

9.1.3 Assessment of the correlation

The test series presented in the preceding sections demonstrated that a correlation of the

historiotropy with the dynamic soil properties, in particular the wave velocities or the

dynamic stiffnesses, does not exist or is at least not clear enough for practical purposes.

Thus, the tests of Drnevich & Richart [27] were disproved and also the micromechani-

cal considerations (Section 9.1.1) could not be confirmed. Furthermore, a correlation of

the historiotropy with the material damping is rather unlikely. However, this should be

clarified in future.

9.2 Correlation of cyclic preloading with the lique-

faction resistance

9.2.1 Motivation

In Section 3.2.2.9 it was shown, that a cyclic preloading or the fabric of the grain skeleton

influence the liquefaction resistance of a non-cohesive soil. Furthermore, many diagrams in

the literature correlate the liquefaction resistance with sounding resistances. Correlation

diagrams as those in Figure 9.10 after Robertson & Wride [129] are established on the

basis of observations if a soil has liquefied during an earthquake of a certain magnitude

or not. With the estimated intensity of cyclic loading τ ampl/p0 and sounding resistances

before the earthquake a borderline can be found, above which a liquefaction is likely while

it will probably not occur below this line. Correlation diagrams were established e.g.

by Seed et al. [141, 140, 139] for SPT soundings (”standard penetration test”) and by

Robertson & Campanella [128] and Robertson & Wride [129] for CPT soundings (”cone

penetration test”). Other citations are given by Wichtmann et al. [178].

9.2.2 Laboratory tests

The aim of the tests presented in the following was to establish a correlation between

the historiotropy gA and the liquefaction resistance. In a second step, correlations of the
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Figure 9.11: Accumulation curves εacc
v (N)

during drained cyclic preloading

liquefaction resistance with sounding resistances could be used in order to determine gA
0 in

situ. Undrained cyclic triaxial tests were performed on specimens, which were previously

subjected to a drained cyclic preloading. Four different intensities of cyclic preloading

(number of cycles 0 ≤ Npreload ≤ 100 and stress amplitudes 30 kPa ≤ qampl
preload ≤ 50 kPa)

were tested (Table 9.1).

Cyclic preloading No. 1 2 3 4

qampl
preload [kPa] - 30 50 50

Npreload [-] 0 10 10 100

Table 9.1: Tested cyclic preloadings

The specimens were prepared with initial densities 0.63 ≤ ID0 ≤ 0.68 and consolidated

under isotropic stresses with p0 = 100 kPa. A drained cyclic preloading with pav = 100

kPa, qav = 0, σ3 = constant and a stress-controlled cyclic variation of the axial stress

followed. The stress amplitudes qampl
preload = 30 kPa and qampl

preload = 50 kPa led to strain

amplitudes εampl ≈ 3.1 · 10−4 and εampl ≈ 5.8 · 10−4, respectively. Since the average stress

lay on the p-axis, a pure volumetric accumulation of strain took place (ε̇acc
q = 0, see

Figure 6 in [178]). Typical accumulation curves for the volumetric strain εacc
v (N) in the
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preloading phase are depicted in Figure 9.11.

After the application of the drained cyclic preloading, the drainage of the specimens was

closed and the cyclic loading was continued without drainage. While the total lateral

stress remained constant, the axial stress was cyclically varied with an amplitude qampl.

For each of the four tested cyclic preloadings several tests with different amplitudes qampl

during the undrained cyclic loading were performed. In the analysis of the undrained

cyclic loading, the effective stresses are denoted by t′ in the following.
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Figure 9.12: Development of the pore water pressure u and the effective lateral stress σ3
′

during undrained cyclic loading in four tests on specimens with different drained cyclic

preloadings (all tests: qampl = 45 kPa)

Figure 9.12 shows the increase of the pore water pressure u during the undrained cyclic

loading in four tests with different cyclic preloadings but identical amplitudes qampl = 45

kPa in the test phase without drainage. The initial liquefaction was defined as the state

when u = σ3 and thus σ′
3 = 0 was reached for the first time. The initial liquefaction was

followed by a phase with cyclic mobility. An increase of the intensity of cyclic preloading
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Figure 9.13: Development of the axial strain ε1 during undrained cyclic loading in four

tests on specimens with different drained cyclic preloadings (all tests: qampl = 45 kPa)

(in the amplitude or in the number of cycles) reduced the rate of pore water pressure

accumulation u̇ = ∂u/∂N and as a result, more cycles were needed to reach initial lique-

faction. The freshly pluviated specimen attained u = σ3 for the first time after approx. 5

cycles, while the specimen preloaded with qampl
preload = 30 kPa and Npreload = 10 liquefied

after 8 cycles. The preloading with qampl
preload = 50 kPa and Npreload = 10 delayed the initial

liquefaction to occur after 43 cycles and in the case of the preloading with qampl
preload = 50

kPa and Npreload = 100 even 205 cycles were needed.

While the amplitude of the axial strain εampl
1 remained small during the first cycles, it

increased strongly during the cycle which led to initial liquefaction (Figure 9.13). In

the following, εampl
1 increased with each cycle. The strain cycles were approximately

symmetrically to ε1 = 0, i.e. in each cycle |εmin
1 | ≈ |εmax

1 | was valid. From Figure 9.13

it becomes clear, that independently of cyclic preloading the so-called ”full liquefaction”

(defined as the time when a double amplitude of the axial strain of 2εampl
1 = 10 % was

reached) and the failure of the specimen occured within four or five cycles after the initial
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Figure 9.14: Stress-strain-hystereses for different numbers of cycles N during undrained

cyclic loading in four tests on specimens with different drained cyclic preloadings (all

tests: qampl = 45 kPa)

liquefaction. The specimens always failed on the extension side of the p-q-plane.

Figure 9.14 presents the q-ε1-hystereses and in Figure 9.15 the effective stress paths in

the p-q-plane are given. Despite the fact that the cyclic preloading increased the number

of cycles necessary to reach liquefaction, no principal differences could be detected in

the shape of the hystereses or the course of the stress paths. Similar stress paths and

hystereses were observed in undrained cyclic triaxial tests by other authors (e.g. Hyodo

et al. [61, 62, 60]).

In Figure 9.16, the amplitude ratio CSR = qampl/(2p0) was plotted for each test versus

the number of cycles N necessary to cause full liquefaction (2εampl
1 = 10 %). Figure

9.16 makes clear, that for a certain cyclic preloading larger stress amplitudes qampl in

the test phase without drainage cause an earlier liquefaction of the specimens. The cyclic

preloading shifts the curves CSR(N) in the direction of the upper right corner, i.e. it leads

to a significant increase of the liquefaction resistance. For a freshly pluviated and non-
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Figure 9.15: Stress paths in the p-q-plane during undrained cyclic loading in four tests on

specimens with different drained cyclic preloadings (all tests: qampl = 45 kPa)

preloaded specimen, the full liquefaction in 15 cycles (earthquake magnitude M = 7.5) is

reached with an amplitude ratio CSRN=15 = 0.189. For the cyclic preloadings Nos. 2, 3

and 4, this value amounts CSRN=15 = 0.208, CSRN=15 = 0.259 and CSRN=15 = 0.295,

respectively.

The historiotropic variable gA
0 was calculated according to Equation (5.16) for the different

cyclic preloadings. In Figure 9.17, the amplitude ratio CSRN=15 is plotted versus gA
0 .



242 Chapter 9. Determination of the historiotropic variable gA
0 in situ

10 15 100

0.30

0.25

0.20

0.15

C
S

R
 =

 q
am

pl
/(

2p
0)

 [-
]

non-preloaded

10 / 50 kPa

10 / 30 kPa

q
preload  

N
preload  ampl

/

=
100 / 50 kPa

all tests:
ID0 = 0.63 - 0.68 1

2

3

4

Number of cycles N to 2 � ampl = 10 % [-]1

Figure 9.16: Relationship between the am-

plitude ratio CSR = qampl/(2p0) and the

number of cycles N necessary to reach full

liquefaction (2εampl
1 = 10 %) for different

cyclic preloadings

0 0.01 0.02 0.03 0.04 0.060.05
0.18

0.22

0.26

0.30

0.34

C
S

R
N

=
15

 [-
]

Cyclic preloading gA [-]

Eq. (9.6)

0

Figure 9.17: Amplitude ratio CSRN=15

necessary to cause a full liquefaction in 15

cycles as a function of cyclic preloading gA
0

CSRN=15 increases with gA
0 according to

CSRN=15 = CSRN=15,0

[
1 + Cg1 ln (1 + Cg2 g

A
0 )
]

(9.6)

with the material constants Cg1 = 0.46 and Cg2 = 51.6. CSRN=15,0 = 0.189 is the

amplitude ratio for the reference state gA
0 = 0 and an average void ratio of the tests of

eref = 0.681 (ID = 0.65).

9.2.3 Practical application of the correlation

A possible practical application of the correlation of gA
0 with the liquefaction resistance

is described in the following. Having performed SPT or CPT soundings in situ, a profile

with depth of CSRN=15 can be obtained from correlations as those in Figure 9.10. An

example of such a profile is given in Figure 9.18. If correlation diagrams between sounding

resistances and CSRN=15 do not exist (e.g. in regions with no or little seismic activity),

a correlation appropriate for the given grain size distribution has to be chosen from the

literature.

From a few tests on disturbed specimens, a curve CSR(N) similar to curve No. 1 in Figure

9.16 (non-preloaded specimens) is established and CSRN=15,0 is determined. The tests

should be performed with the in-situ density. However, if the density strongly fluctuates

it may be more reasonable to determine CSRN=15,0 for a constant reference void ratio eref
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and to introduce a void ratio function f(e) with f(e) = 1 for e = eref. It has to be proven,

if Equation (5.8) obtained from drained tests can be set into approach. From the data

of undrained tests performed by Seed & Lee [143] e.g. f(e) = 1 + eref − e results (Figure

9.19). Assuming the validity of Equation (9.6), independently of the grain characteristics

of the sand (this also has to be proven in future), the initial value gA
0 can be determined

from

gA
0 (z) =

1

Cg2

{

exp

[
1

Cg1

(
CSRN=15(z)

CSRN=15,0 f(e)
− 1

)]

− 1

}

(9.7)

Equation (9.7) neglects (similar to Seed & Lee [143]) the influence of the stress on the

liquefaction resistance. The sounding resistances also increase due to an aging of the soil.

Following the procedure described above, aging effects are treated equivalent to a cyclic

preloading. However, this can be legitimated by the decrease of the accumulation rate

due to aging effects (Section 3.2.2.11). Another problem of the proposed method is, that

the profile of density with depth ID(z) cannot be determined by means of correlations of

the sounding resistance with ID (see e.g. supplementary sheet 1 of DIN 4094). The reason

for this is, that the procedure is based on the assumption that the sounding resistances

depend not only on density but also on the cyclic preloading of the soil. A determination

of ID by means of sampling seems to be possible.

Considering the disadvantages and uncertainties of the proposed procedure, further re-

search is necessary concerning its practical application.
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9.3 Determination of the historiotropy with test load-

ings

A determination of the historiotropic variable gA
0 of an in-situ soil may be possible also

by means of test loadings on the soil surface. Quasi-static cyclic loadings have only a

small penetration. Dynamic test loadings should be preferred, since they cause a wave

propagation in the soil and thus also deeper layers are cyclically sheared. Triantafyllidis et

al. [164] e.g. discussed a dynamic test loading using a vibrator (Figure 9.20a) on a tempo-

rary foundation. More practically and economically meaningful is a transportable device.

Figure 9.20b presents a test device which already exists at the institute in Bochum. A

repeated loading of the soil by single impulses is achieved by a weight which is lifted up

and afterwards dropped down. At the moment, the device is in the test phase. Indepen-

dently of the used method (vibrator or falling weight), the amplitude of the settlement

(e.g. by acceleration transducers) and the development of the settlement with the number

of cycles (e.g. by geodetic methods or by a grid with displacement transducers) have to be

measured. If the state variables and the material constants of the soil are known, gA
0 can

be obtained from an FE calculation of the boundary value problem of the test loading.

Eventually, direct correlation diagrams between the rate of settlement accumulation in

the test loading and gA
0 can be established. In either case the influence of the ground

water has to be analysed. The capillarity above the ground water level reduces the accu-

mulation rate. Furthermore, the wave generated by the dynamic loading is reflected at

the ground water level.

electromagnet
(lift up of the 
 falling weight)

electric motor

falling weight

acceleration
transducer (sampl)

acceleration
transducer (sampl)

s

vibrator
F(t)

s(N) s(N)

a) b)

Figure 9.20: Determination of the historiotropy gA
0 from a dynamic test loading generated

a) by means of a vibrator and b) by means of a falling weight
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Due to their limited penetration, test loadings at the soil surface can deliver the histo-

riotropy only for the upper soil layers. At the moment, no information is available how

strongly gA
0 varies with depth z. If this variation is large, the determination of a profile

gA
0 (z) is desirable, in particular in the case of settlement prognoses for deep foundations.

Such a profile could be received from cyclic pressuremeter tests, which were recently per-

formed by Dupla & Canou [28] in a small scale in a calibration chamber. The principle

of the pressuremeter traces back to Ménard. It is based on the lateral expansion of a

cylindrical excavation in the soil over a certain depth. Usually, pressuremeter tests with

a monotonic expansion of the excavation are applied in order to determine the stress-

deformation-behaviour and the bearing capacity of the soil. Pressuremeter tests can be

interpreted well by theories of the expansion of excavations (e.g. Baguelin et al. [6],

Hughes et al. [58], Cudmani [25]). An undrained cyclic loading of a cylindrical excavation

was studied experimentally by Schwab & Dormieux [137].

In tests with different initial densities and cycles under drained conditions, Dupla &

Canou [28] measured the development of the volumetric strain of the excavation εacc
v,cav

with the number of cycles N . Figure 9.21a shows a typical curve εacc
v,cav(N). Furthermore,

in undrained cyclic triaxial tests on the same sand similar initial densities were tested.

Thus, for different stress amplitudes a correlation between the number of cycles necessary

to reach liquefaction and the expansion of the excavation εacc
v,cav(N = 50) after 50 cycles

could be established (Figure 9.21b).
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The experimental determination of correlation diagrams between the expansion of the
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excavation after a definite number of load cycles with a predefined amplitude of pressure

on the one side and the historiotropic variable gA
0 on the other side seems to be viable.

Such correlations would have to be established for different grain size distribution curves,

densities and stresses. During the sounding in situ, an excavation would be cyclically

expanded in several depths (e.g. a test every 1 m) and by means of the correlations a

profile gA
0 (z) can be obtained.

However, it has to be proven in which distance to the pressuremeter probe the soil is

disturbed due to the penetration of the probe. Furthermore, the range of the cyclic

expansion has to be checked. It has to be clarified how strongly the change of the fabric

of the grain skeleton near the probe affects the accumulation curves. For poorly draining

soils, i.e. soils with a low permeability, it would be longsome to choose such a low frequency

that no pore pressure would be built up or to wait the consolidation after each cycle. In

this case the loading can be applied faster, i.e. partly drained or almost undrained, if the

build-up of pore water pressures is measured at the probe with respective transducers.

The sum of the effects of the pore water pressure accumulation and εacc
v,cav can be considered

as a measure of volumetric accumulation.



Chapter 10

Summary and outlook

10.1 Summary

A cyclic loading often leads to an accumulation of residual deformations in the soil. The

resulting differential settlements or tiltings may endanger the serviceability of a founda-

tion. Thus, a class A prediction is desirable. For such prognoses, an explicit accumulation

model was developed in Bochum. It is based on numerous cyclic triaxial tests and cyclic

multidimensional simple shear tests on a medium coarse to coarse quartz sand with sub-

angular grains.

The main findings of the element tests with cylindrical compression or extension concern-

ing the direction of accumulation εacc
v /εacc

q (”cyclic flow rule”) were:

� The direction of accumulation depends almost exclusively on the average stress ratio

ηav = qav/pav. At an isotropic average stress (ηav = 0), a pure volumetric accumu-

lation (ε̇acc
q = 0) takes place. On the critical state lines (ηav = Mc(ϕc) for triaxial

compression and ηav = Me(ϕc) for triaxial extension) only the deviatoric strains

accumulate (ε̇acc
v = 0). At average stresses laying between the critical state lines in

the p-q-plane, small cycles lead to a compaction of the material. For average stresses

with ηav < Me(ϕc) and ηav > Mc(ϕc), a dilative material behaviour was observed.

� The direction of accumulation is not influenced by the average mean pressure pav,

the stress or strain loop (span, polarization, shape), the void ratio, the loading fre-

quency, the monotonic preloading and the grain size distribution curve.

� A slight increase of the volumetric portion of the direction of accumulation with the

number of cycles N was measured. Simultaneously, the stress ratio ηav(ε̇acc
v = 0)

evolved with N towards larger amounts |ηav|.

247
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� The direction of accumulation under cyclic loading can be well described by flow

rules for monotonic loading (e.g. modified Cam Clay model, hypoplasticity).

Referring to the intensity of accumulation ε̇acc =
√
ε̇acc
1 + 2ε̇acc

3 , the following results were

obtained:

� In triaxial tests with a constant average stress, σ3 = constant and an oscillation of

the axial stress in the range 10 kPa ≤ σampl
1 ≤ 80 kPa (resulting in small strain

amplitudes εampl < 10−3) it was observed, that the accumulation rate ε̇acc is pro-

portional to the square of the strain amplitude, i.e. ε̇acc ∼ (εampl)2 holds.

� Tests with larger strain amplitudes (εampl > 10−3) revealed that this quadratic re-

lationship loses its validity when the stress cycles exceed the critical state line.

� If among σ1 also the lateral stress σ3 is cyclically varied and if both stress compo-

nents oscillate without a phase shift in time, stress cycles along a straight line with

a certain inclination in the p-q-plane are obtained. For a given strain amplitude

εampl, the accumulation rate ε̇acc is independent of the inclination of the cycles.

� In simple shear tests it was observed that circular strain loops cause twice larger

accumulation rates than one-dimensional strain loops with an identical maximum

span. Thus, the shape of the strain loop strongly influences the accumulation rate.

� A simple shear test, in which the circulation was changed from ”clockwise” to ”coun-

terclockwise”, demonstrated that the circulation of the strain loop is unimportant

for ε̇acc.

� In further simple shear tests a temporary increase of the accumulation rate was

measured due to a sudden change of the polarization (i.e. the direction) of the

cycles.

� Triaxial tests with identical stresses but different initial void ratios confirmed that

the accumulation rate increases with the void ratio e. The relationship ε̇acc(e) can be

described by a hyperbolic function. The zero-crossing of this function corresponds

to the void ratio for which the accumulation rate vanishes (ε̇acc = 0). The void ratio

e(ε̇acc = 0) is smaller than the minimum void ratio emin from the standard procedure

of DIN 18126.

� From triaxial tests with different average mean pressures 50 kPa ≤ pav ≤ 300 kPa

(at a constant average stress ratio ηav) it could be concluded that for a given void

ratio and a given strain amplitude, the accumulation rate ε̇acc decreases with in-

creasing pav. The dependence ε̇acc(pav) can be described by an exponential function.

However, the pressure-dependence ε̇acc(pav) increases with the number of cycles N .
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� Tests with pav = constant but different average stress ratios 0.375 ≤ ηav ≤ 1.375

showed, that the accumulation rate increases with increasing average stress ratio.

The relationship ε̇acc(ηav) can be captured by an exponential function. Also for

triaxial extension (ηav < 0), an increase of the accumulation rate with |ηav| was

measured.

� In the tested range 0.05 Hz ≤ fB ≤ 2 Hz, the loading frequency fB did not influence

the accumulation rate.

� In the triaxial tests on a medium coarse to coarse sand, the increase of the residual

strain with the number of cycles N was proportional to ln(N) up to N = 104. For

larger numbers of cycles, over-logarithmical curves εacc(N) were obtained, probably

due to abrasion at the particle contacts. Tests on different sands revealed that the

shape of the curves εacc(N) depends also on the grain size distribution curve.

� For an identical void ratio e and an identical average stress σ
av, different accumu-

lation rates were measured depending on the historiotropy (cyclic preloading), i.e.

depending on the fabric of the grain skeleton. A strong historiotropy significantly

reduces the accumulation rate.

� If the soil is loaded by packages of cycles with different amplitudes (but with a

constant polarization), the sequence of the packages plays a minor role concerning

the residual strain at the end of the test. Thus, as long as the polarization of the

cycles is constant, the Miner’s rule [96] is applicable to sand in a first approximation.

� The influence of a monotonic preloading (an isotropic and a K0-preloading were

tested) is much less pronounced than the effect of a cyclic preloading.

� Also the grain size distribution curve influences significantly the accumulation rate.

Four different sands (0.35 mm ≤ d50 ≤ 1.45 mm and 1.4 ≤ U = d60/d10 ≤ 4.5)

were tested in cyclic triaxial tests. For identical strain amplitudes and relative den-

sities, fine-grained non-cohesive soils densify much faster than coarse soils, i.e. ε̇acc

increases with decreasing mean grain diameter d50. The largest accumulation rates

were measured for a well-graded soil, i.e. ε̇acc increases with the non-uniformity

index U .

The Bochum accumulation model describes the experimentally observed dependencies in

a material formulation which is similar to viscoplastic models. The number of cycles N

is used instead of time t. The accumulation rate ε̇
acc is calculated as a product of a

tensorial direction of accumulation m (flow rule) and several factors, each considering one

individual influencing parameter. For the description of multidimensional strain loops

(consideration of the shape of the strain loop), a special tensorial definition of the strain

amplitude is used. The polarization of the previous cycles is memorized in a variable
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called ”back polarization”. An additional factor describes the temporary increase of the

accumulation rate due to polarization changes. The historiotropic variable gA weights the

number of the cycles in the past with their amplitude. The accumulation model needs

eight material constants, which, at present, are available for a medium coarse to coarse

sand and partly also for a fine sand.

By means of the Finite Element Method and the accumulation model, a centrifuge model

test of Helm et al. [49] (strip foundation under cyclic loading) was re-calculated and a

good agreement of the settlement curves of the model test and the re-calculation could

be achieved. Furthermore, parametric studies on cyclically loaded shallow foundations

were performed. The variables of the soil (initial density ID0, coefficient of lateral earth

pressure K0, historiotropic variable gA
0 ), the loading of the foundation (average value F av,

amplitude F ampl) and the geometry of the foundation (depth of embedding t, width b)

were varied. If a strip foundation carries a cyclic load F av ± F ampl, the rate of settlement

decreases

� with increasing initial density ID0,

� with increasing coefficient of lateral earth pressure K0,

� with increasing historiotropy gA
0 ,

� with decreasing load amplitude F ampl while the average load F av is kept constant,

� with increasing average load F av while the amplitude F ampl is kept constant,

� with increasing depth of embedding t and

� with increasing width of the foundation b.

For a given cyclic portion F ampl, a reduction of the rate of settlement can be achieved

by a pre-compaction of the soil (ID0 ↑, gA
0 ↑, K0 ↑), by choosing a larger self-weight

of the building (F av ↑) or (if possible) by an increase of the width of the foundation

(much more effective than for static loads) or an increase of the depth of embedding.

As another boundary value problem, a pile under cyclic axial loading was calculated.

The development of the settlements and the stresses acting on the pile was studied in

dependence on the pile loading.

For a prediction of the settlement, the determination of the historiotropic variable gA
0 of

the in-situ soil is of primary importance. The historiotropy cannot be measured directly

but has to be determined from correlations. The laboratory tests in this work demonstrate,

that a correlation of gA
0 with dynamic soil properties (wave velocities, material damping)

is not viable. A correlation of gA
0 with the liquefaction resistance could be established. A

practical application of this correlation using soundings is proposed.
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10.2 Outlook

The present work could answer several questions concerning the material behaviour of

non-cohesive soils under cyclic loading. However, the need for further research on some

aspects of this wide topic became clear. Further cyclic element tests are necessary to

improve the explicit equations:

� Correlation of the material constants of the accumulation model with the charac-

teristics of the grains (d50, U = d60/d10, grain shape and roughness). The use of

correlations shall allow the determination of a set of material constants of the accu-

mulation model with only a few tests.

� Tests with large strain amplitudes εampl > 10−3 in order to develop a procedure

for the handling of such cycles in an explicit calculation. This is of importance

especially for the application of the model on problems with large strain amplitudes

(e.g. vibratory compaction, earthquakes).

� Study of the accumulation rate at small stresses (pav < 50 kPa)

� Tests on ε̇
acc for large numbers of cycles N > 105

� Additional tests on the influence of a monotonic preloading and eventually also on

the influence of aging effects on ε̇
acc

In the accumulation model, the elastic stiffness E connects the accumulation of stress with

the accumulation of strain. The value of E is especially important in such applications,

where a non-negligible accumulation of stress takes place (e.g. piles under cyclic loading).

The correct choice of E has to be studied in more detail in future.

The correct prediction of the strain amplitudes in the implicit cycles is of major im-

portance for the prognosis of accumulation with an explicit model. In this work, the

hypoplastic model with the intergranular strain was used. The studies in this work reveal

that improvements concerning the hypoplastic model and in particular the formulation of

the intergranular strain are necessary.

An efficient method to determine the historiotropy gA
0 in situ has to be developed. The

practical application of the correlation of gA
0 with the liquefaction resistance has to be

checked. Furthermore, the applicability of dynamic test loadings on the soil surface and

the suitability of cyclic pressuremeter soundings for the determination of gA
0 has to be

proven. An alternative way could be the determination of gA
0 by means of measurements

of acoustic emissions.

Furthermore, the development of explicit relations for the cyclic behaviour of cohesive

soils is desirable.
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Modelltechnik. In Beiträge zum Workshop: Boden unter fast zyklischer Belastung:

Erfahrungen und Forschungsergebnisse, pages 59–75, 2000. Veröffentlichungen des
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Belastung. Diplomarbeit am Lehrstuhl für Grundbau und Bodenmechanik, Ruhr-

Universität Bochum, 1999.



Bibliography 257

[60] M. Hyodo, A.F.L. Hyde, N. Aramaki, and Y. Nakata. Undrained monotonic and

cyclic shear behaviour of sand under low and high confining stresses. Soils and

Foundations, 42(3):63–76, 2002.

[61] M. Hyodo, H. Murata, N. Yasufuku, and T. Fujii. Undrained cyclic shear strength

and residual shear strain of saturated sand by cyclic triaxial tests. Soils and Foun-

dations, 31(3):60–76, 1991.

[62] M. Hyodo, H. Tanimizu, N. Yasufuku, and H. Murata. Undrained cyclic and mono-

tonic triaxial behaviour of saturated loose sand. Soils and Foundations, 34(1):19–32,

1994.

[63] K. Ishihara and S. Okada. Effects of stress history on cyclic behavior of sands. Soils

and Foundations, 18(4):31–45, 1978.

[64] K. Ishihara and S. Okada. Effects of large preshearing on cyclic behavior of sand.

Soils and Foundations, 22(3):109–125, 1982.

[65] K. Ishihara and F Yamazaki. Cyclic simple shear tests on saturated sand in multi-

directional loading. Soils and Foundations, 20(1):45–59, 1980.

[66] K. Ishihara and S. Yasuda. Sand liquefaction in hollow cylinder torsion under

irregular excitation. Soils and Foundations, 15(1):29–45, 1975.

[67] T. Iwasaki and F. Tatsuoka. Effects of grain size and grading on dynamic shear

moduli of sands. Soils and Foundations, 17(3):19–35, 1977.

[68] T. Iwasaki, F. Tatsuoka, and Y. Takagi. Shear moduli of sands under cyclic torsional

shear loading. Soils and Foundations, 18(1):39–56, 1978.

[69] W.S. Kaggwa, J.R. Booker, and J.P. Carter. Residual strains in calcareous sand due

to irregular cyclic loading. Journal of Geotechnical Engineering, ASCE, 117(2):201–

218, 1991.

[70] R. Katzenbach and G. Festag. Material behaviour of dry sand under cyclic loading.

In T. Triantafyllidis, editor, Cyclic behaviour of soils and liquefaction phenomena,

Proc. of CBS04, pages 153–158. Balkema, 2004.

[71] H.G. Kempfert, A. Gotschol, and T. Stöcker. Kombiniert zyklische und dynamische
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Appendix I

Notation

The tensorial notation is used as well as the index notation. For scalar variables, characters

with normal letters (e.g. e, N) are used while second-order tensors are denoted by fat

(e.g. T, D), fourth-order tensors by sans-serif (e.g. L, I) and eighth-order tensors by

caligraphical (e.g. R) characters. The notation of several tensor products is given in

Table I.1 exemplary for the two tensors A and B.

Product Tensorial notation Index notation Result

dyadic product A ⊗ B Aij Bkl fourth-order tensor

single contraction A · B Aik Bkj second-order tensor

double contraction A : B Akl Bkl scalar

quadruple contraction A :: B Aklmn Bklmn scalar

Table I.1: Tensor products

The Euclidean norm is defined (here exemplary for the second-order tensor A) as

‖A‖ =
√

A : A =̂
√

Akl Akl (I.1)

The trace of a tensor is calculated from the sum of the elements on its primary diagonal,

i.e.:

tr (A) =̂ Akk = A11 + A22 + A33 (I.2)

The deviator of a tensor A is

A∗ = A − 1

3
tr (A) 1 (I.3)
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wherein 1 =̂ δij is an identity tensor. The Kronecker symbol δij means

δij =

{

1 for i = j

0 for i 6= j
(I.4)

A normalization is denoted by an arrow above the respective symbol

~A =
A

‖A‖ (I.5)

and a division by the trace of the tensor is identified by a roof:

Â =
A

tr (A)
(I.6)



Appendix II

Tensorial generalization of several

definitions in Chapter 2

In Chapter 2, the definitions were shown for the triaxial case. Here, they are given in full

tensor notation. The Roscoe invariants of the Cauchy stress tensor σ = −T read:

p = trσ/3 (II.1)

q =
√

3/2 ‖σ∗‖ (II.2)

The basic invariants of σ are:

I1 = −(σ11 + σ22 + σ33) (II.3)

I2 = σ12
2 + σ13

2 − σ11σ22 + σ23
2 − σ11σ33 − σ22σ33 (II.4)

I3 = σ13
2σ22 − 2σ12σ13σ23 + σ11σ23

2 + σ12
2σ33 − σ11σ22σ33 (II.5)

The basic invariants of the stress deviator are defined as follows:

J2 = (σ∗ : σ
∗)/2 (II.6)

J3 = det(σ∗) (II.7)

The octahedral shear stress is:

τoct = (σ∗ : σ
∗)/

√
3 (II.8)

The invariants of the strain tensor ε (volumetric strain εv, deviatoric strain εq) read:

εv = tr ε (II.9)

εq =
√

2/3 ‖ε∗‖ (II.10)
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The total strain is:

ε = ‖ε‖ (II.11)

The shear strain can be calculated from:

γ =
√

3/2 ‖ε∗‖ (II.12)

The tensorial rate of strain accumulation can be written as a product of the scalar intensity

of accumulation ε̇acc = ||ε̇acc|| and the direction of accumulation m = ε̇
acc/||ε̇acc||:

ε̇
acc = ε̇acc m (II.13)

Figure II.1 shows a respective illustration in the ε̇acc
P -ε̇acc

Q -plane. The intensity of accumu-

lation is identical with the length of the vector, the direction of accumulation describes

its inclination.

� acc

� acc

� acc
P

� acc
v= 1/  3

� acc
Q

� acc
q=   3/2

1

m

Figure II.1: Multiplicative description of the accumulation rate ε̇
acc = ε̇acc m



Appendix III

General, tensorial notation of the

amplitude and the back polarization

Amplitude definition

From the implicit calculation of the second cycle or a control cycle, in each integra-

tion point the strain loop is available as a series of discrete strain points εk, k = 1, ...,M

each with six independent components. The following scheme describes the practical

realization of the determination of the amplitude Aε:

1. Determination of the two strain points of the loop which have the largest distance,

calculation of their distance 2R(6) and the direction~r(6) (unit tensor) of a straight line

through these points. It does not matter which of both possible opposite directions

is chosen.

2. Projection of the loop on the (hyper)plane perpendicular to ~r(6). The result is the

projected loop with the strain points ε
(5):

ε
(5) = ε

(6) −~r(6) : ε
(6)~r(6) (III.1)

3. Determination of the two strain points of the projected loop with the largest dis-

tance, calculation of this distance 2R(5) and the corresponding direction ~r(5).

4. Repetition of steps 2 and 3 for the dimensions (4) to (1). This procedure can be

stopped before the dimension (1) is reached, if the span of the projected loop 2R(i)

is smaller than a certain percentage (e.g. 10 %) of the span 2R(6). This way, up

to six spans 2R(i) and directions ~r(i) are obtained. The directions of projection are
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mutually perpendicular, i.e. ~r(i) : ~r(j) = 1 for i = j and ~r(i) : ~r(j) = 0 for i 6= j holds

with i, j = 1, ..., 6.

5. Finally, the fourth order tensor of the strain amplitude Aε is calculated from the

sum of the dyadic products of the directions ~r(i) ⊗~r(i) weighted with the respective

half spans R(i):

Aε =

6∑

i=1

R(i) ~r(i) ⊗~r(i) (III.2)

Back Polarization

Let us consider two subsequent packages ”a” and ”b” with an identical polarization

(~A
a

ε = ~A
b

ε). Assuming π = ~A
a

ε at the change from package ”a” to ”b”, the angle be-

tween π and ~A
b

ε is

cosα = ~A
b

ε :: π = 1 (III.3)

and fπ = 1 follows from Equation (7.12). If the polarizations of the two packages of cycles

are mutually perpendicular (~A
a

ε :: ~A
b

ε = 0) one obtains

cosα = ~A
b

ε :: π = 0 (III.4)

and Equation (7.12) delivers fπ = 1 + Cπ1. The angle α evolves according to Equation

(7.18). In order to rotate the tensor π by the angle ∆α = α̇∆N (Figure 7.5) the eighth-

order tensor R is used (Niemunis et al. [111]):

πnew = R :: πold (III.5)

R = (cos ∆α− 1) (~µ ⊗ ~µ + ~ν ⊗ ~ν) + sin ∆α (~ν ⊗ ~µ − ~µ ⊗ ~ν) + I (III.6)

with µ = ~Aε + π and ν = ~Aε − π and the fourth-order identity tensor Iijkl = 0.5(δikδjl +

δilδjk). In the general case, Equation (7.20) for the initial value of π for a fully chaotical

state (no preference for any direction) is replaced by (Niemunis et al. [111])

π0 = π
iso =

1

3
J (III.7)

with the identity tensor Jijkl = δikδjl.
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