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Abstract. The dispersion of longitudinal and shear elastic waves propagating in dry sand cylindrical specimens 
is studied by experimental, analytical and numerical methods. Wave propagation in the specimen is studied 
experimentally with the aid of a triaxial cell system equipped with pairs of piezoelectric ceramic elements for the 
generation and reception of longitudinal and shear waves. Two different models taking into account the 
microstructural properties of dry sand, a gradient elastic and an elastic porous model, are also employed to 
study wave dispersion analytically. The same problem is also studied by the boundary element method in the 
frequency domain in conjunction with the iterative effective medium approximation on the assumption that dry 
sand is a porous medium with equally sized spherical pores. The results of all methods are critically compared 
and discussed. 
 
1 INTRODUCTION 

Wave propagation in granular materials, such as sands, sandstones, grains, ceramics, porous bones and 
pressed powders is an important field of study in geotechnical engineering, geophysics, bioengineering and 
material science and engineering. Wave propagation studies in these materials aim at the understanding of their 
internal microstructure, determining their mechanical properties and establishing accurate and efficient methods 
for the evaluation of their response to dynamic loading.  

Among the many published works on elastic wave propagation in granular media, one can mention 
experimental studies[1-5], analytical studies[6-13] and numerical studies[14-17]. To the authors’ best knowledge, with 
the exception of references[4, 15] where there is a comparison between experimental and analytical results, no 
comparisons between the results of the above three kinds of methods have been reported in the recent literature.  

The present work represents a moderate effort towards a comparison of experimental, analytical and 
numerical methods as applied to the study of wave propagation in granular media. More specifically, this work 
studies dispersion of longitudinal (P) and shear (S) waves in dry sand assuming small-amplitude harmonic 
waves. Experimental dispersion curves are obtained with the aid of a triaxial cell system with pairs of 
piezoelectric transducers for the generation and reception of waves at the bottom and top, respectively, of a 
cylindrical dry sand specimen pre-pressured uniformly. The dispersion curves of the specimen are also obtained 
on the basis of two different microstructural elasticity theories: the linear elasticity with pores (voids) due to 
Cowin and Nunziato[7] and the linear dipolar gradient elasticity due to Mindlin[18]. Finally, dispersion is also 
studied by a numerical method that combines the iterative effective medium approximation technique[14, 15] used 
for the elastic porous medium of the sand specimen with the frequency domain boundary element method used 
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for the wave scattering analysis. All the methods are in agreement for the cases of high frequencies for which 
there are essentially no dispersional waves. However, for the cases of low frequencies there is disagreement 
between the methods, which is clearly pointed out. 

2 EXPERIMENTAL METHOD 

The phase velocities of longitudinal (P) and shear (S) waves propagating in dry sand cylindrical specimens 
have been measured with the aid of a triaxial cell test device instrumented with pairs of piezoelectric elements. 
These elements (three types of them) are placed at the specimen end plates and serve to generate and receive P 
and S waves. The experimental technique for measuring wave velocities is shown schematically in Fig. 1. A 
single sine voltage is generated by a function genarator, then is amplified and finally is conducted towards an 
oscilloscope and towards the selected piezoelectric transducer placed at the lower specimen end plate. The 
electrical impulse causes a deformation of the piezoelectric element and thus the emission of a wave. 
Conversely, the wave arrival at the upper specimen end plate has as a result the generation of an eclectric output 
to the corresponding receiver. Finally, the received signal after amplification is transferred to a computer for 
post-processing purposes. The wave velocity is then calculated as the quotient of the travel length (length of the 
specimen) and travel time (time difference between the start of the transmitted signal and the first arrival of the 
received signal). Since every generated sine signal is associated with a specific frequency, every measured wave 
velocity becomes a function of frequency, thereby creating a phase velocity versus frequency relation, i.e., a 
dispersion curve. 

 

 
 

Figure 1. Scheme of the test device 
 
In the present work, cylindrical triaxial specimens 10cm in diameter and 5cm in height were used. The small 

specimen height was chosen in order to reduce the influence of material damping and the reflections of the 
waves at the specimen boundaries. A medium coarse dry sand with mean diameter  and maximum 
and minimum void ratios  and 

0.55mmd =

max 0.874e = min 0.577e = , respectively, was used. The specimens were prepared by 
pluviating dry sand out of a funnel through air into half cylinder moulds. Having placed the specimen top cap, 
sealed the membrane and applied a vacuum of 50 kPa to the grain skeleton, the half-cylinder moulds were 
removed. The geometry of the specimen was measured and the plexiglass cylinder of the pressure cell was 
mounted. The vacuum in the grain skeleton was gradually replaced by the pressure in the cell keeping the 
effective isotropic stress 1 3 =50σ σ= kPa, where the indices 1 and 3 stand for the axial and the radial component, 
respectively. 

The experimental measurements were performed on sand specimens having three different void ratio values 
(e = 0.797, 0.667, 0.571) under four effective isotropic stress values ( )1 3 50,100,200,400 kPaσ σ= =  in order to 
study the influence of the relative density of the soil as well as the surrounding pressure on the wave propagation 
velocities. The frequencies of the transmitted waves were varied from 5 kHz up to 200 kHz in steps of 5 kHz. 

 

3 ANALYTICAL METHODS 

According to the theory of linear elastic materials with voids due to Cowin and Nunziato[7], the void volume 
in elastic porous materials changes with the deformation. Thus, the governing equations of motion for such 
materials has the form  

 
 ( ) ii,ji,jjj,i uuu ρφβµλµ =+++  (1) 
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 φδρβφξφγφα κκ =−−− ,ii, u  (2) 
 

where  is the displacement vector, iu φ  the change in void volume fraction, ρ  the mass density, λ  and µ  the 
Lamè constants, , , ,α β γ ξ  and δ  material constants, indicial notation holds, commas indicate spatial 
differentiation and overdots differentiation with respect to time t . Assuming harmonic waves of the form  
 

 ( ) ( )[ ] ,edut,xu txmV/i
iii

ii ωω +−= ( ) ( )[ ]txmV/i
i

iiet,x ωωφφ +−=  (3) 
 
where id  and im are unit vectors indicating the directions of displacement and propagation, respectively, V  the 
phase velocity, ω  the circular frequency and u  and φ  amplitudes, one can prove that, while shear waves 
propagate with ρµ /cV ss ==  (no dispersion), longitudinal waves propagate with a velocity , which 
depends on frequency 

pV

2 fω π= , where f is the frequency in Hz. This  versus f dispersion relation for the 
special case of 

pV

0==γξ  takes the form  
 

 ( ) ( ){ }22 2 2 2/ 2 / 2 / /pV f 2α δ λ µ α δ λ µ β π δ ρ⎡ ⎤ ⎡ ⎤= + + ± − + +⎣ ⎦ ⎣ ⎦
 (4) 

 
According to the dipolar gradient theory of elasticity due to Mindlin[18], as simplified in [13, 4, 16], one can 

have the governing equation of motion of an elastic body with microstructure in the form  
 

 ( ) ( )( ) κκκκ
ρρµλµµλµ ,

2
i,ji,jjj,i

2
ji,jjj,i uhuuuguu −=+++++  (5) 

 
where g  and  are the gradient coefficients of volumetric strain energy and velocity, respectively. h

Assuming harmonic waves of the form  
 

 φ= ∇ +∇×u A   

 ( / )pi c te ω ωφ ⎡ ⎤− ⋅ +⎣ ⎦∇ = m xm  (6) 

 [ ]( / )si c te ω ω− ⋅ +∇× = m xA d   

 
where  and ( ) ρµλ /2c2

p += 2 /sc µ ρ=  stand for the longitudinal and shear wave velocities of classical wave 
propagation, one can prove that both longitudinal and shear waves are here dispersive and the  versus 

s,pV

πω 2/f =  relation takes the form  
 

 ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +−+−−= 222

s,p
222222

s,p
2222

s,p
22

s,p
22

s,p fgc16fh4cfh4c/fgc8V ππππ  (7) 

 

4 NUMERICAL METHOD 

The numerical method used here to study wave dispersion in dry sand is based on the iterative effective 
medium approximation [14, 15] applied with the aid of an advanced frequency domain boundary element method 
for axisymmetric problems [19].  

An elastic wave propagating in a soil medium, which is strongly inhomogeneous, can be considered as the 
sum of a mean wave and a number of fluctuating waves. The mean wave exists in a homogeneous effective 
medium with equivalent properties, while the fluctuating waves are the result of the multiple scattering of the 
mean wave by the randomly distributed material variations with respect to those of the effective medium. Under 
this consideration, the average of fluctuating fields should be vanishing at any direction within the effective 
medium. This self-consistent condition, for the case of a material consisting of grains and voids (dry sand) can 
take the simplified form [14, 15]  
 

 ( ) ( ) ( )1 2, 1 , =g gv g v g
∧ ∧⎛ ⎞ ⎛ ⎞+ − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Ù
k k k k 0

∧  (8) 

 

where vg represents the volume fraction of the sand grains and ( )1 ( , )g
∧ ∧

k k  and  are the forward ( )2 ( , )g
∧ ∧

k k
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scattering amplitudes taken by the solution of the two single wave scattering problems illustrated in Fig. 2. 
 

(a) 

Effective medium

Problem I

S

Sand
Ωk̂

(b) 

Effective medium

Problem II

S

Void
k̂

 
 

Figure 2: Single wave scattering problems of a mean wave propagating in the effective medium; a) the 
scatterer is the sand grain (problem I) and b) the scatterer is a void inclusion with identical to the sand grain 

geometrical properties (problem II). 
 

In the present work, the self-consistent condition (8) is satisfied numerically by following an iterative 
procedure. This iterative effective medium approximation (IEMA) procedure can be summarized as follows: 
Consider a soil medium consisting of identical spherical sand grains with density, shear and bulk moduli, ρg, µg 
and K, respectively in a volume fraction equal to vg. A harmonic elastic wave either longitudinal (P) or shear (S) 
is propagated through the soil. Due to the inhomogeneity, multiple scattering occurs which makes the mean 
wave both dispersive and attenuated. Thus, its complex wavenumber ( )ωeff

dk  can be written as  
 

 ( ) ( ) ( )ωα
ω

ωω eff
deff

d

eff
d i

V
k +=  (9) 

 
where  and  are the frequency dependent phase velocity and attenuation coefficient, respectively, 
of the mean plane wave, while the subscript d denotes either longitudinal 

( )ωeff
dV ( )ωα eff

d

( )Pd ≡  or shear ( )Sd ≡  waves. Next, 
the soil medium is replaced by an elastic homogeneous and isotropic medium with effective shear and bulk 
moduli  and effµ effK , respectively, given by the formulas of Mac Kenzie[20]: 

 
( )31 1

4
geff

g g g
g

K
K v K v

µ
⎡ ⎤

= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

( ) 3 4
1 5 1

9 8
g geff

g g
g g

K
v

K
µ

µ µ
µ

⎡ ⎤+
= − −⎢ ⎥

+⎢ ⎥⎣ ⎦
 

(10) 

 
At the first step of the IEMA method, the effective density is assumed to be  
 

 ( )
1

eff
g gstep

vρ ρ=  (11) 

 
Then, the real effective wave number  is straightforwardly evaluated through (9), using the material 

properties (10) and (11). At the second step of the IEMA, by utilizing the material properties obtained from the 
first step, the two single wave scattering problems, illustrated in Fig. 1, are solved. The solution of the scattering 
problems is accomplished numerically by means of an advanced 3-D axisymmetric boundary element code 

1( )eff
d stepk

[19]. 
Combining relation (8) with a dispersion relation due to Foldy [21], one can arrive at the new effective wave 
number of the mean wave, given by  
 

 ( ) ( )
2 2

32 1

3
,geff eff

d d dstep step

v
k k g

r

∧ ∧⎛ ⎞⎡ ⎤ ⎡ ⎤= + ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠
k k  (12) 

 
 

where r  is the radius of the sand grain. The new, complex now, density 
2( )eff

stepρ  is evaluated from the  
and relations (10). Then the second step is repeated with the material properties (10) and the new density 

2( )eff
d stepk

2( )eff
stepρ  until the self consistent condition (8) is satisfied. Finally, from the relation (9), the frequency 

dependent effective phase velocity  and the attenuation coefficient ( )ωeff
dV ( )ωα eff

d
, are computed.  

5 COMPARISON OF RESULTS 

Due to space limitations only a few results are presented herein. They correspond to the case of dry sand with 
grains of mean radius r = 0.275 mm, volume fraction  or void ratio e = 0.667, Lame’ constants λ=0.6gV g = 3050 
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MPa and µg = 558 MPa and mass density 3=2633kg/mgρ . On the basis of Eqs (10) one can 
obtain ,  and hence  and . These effective 
properties have been used in connection with the two analytical and the numerical method reported herein. 
Figures 3 and 4 show the dispersion curves for P and S waves, respectively, as obtained by the four methods 
considered in this work, i.e., the experimental, the two analytical and the numerical method. The analytical 
method of porous elasticity 

211MPaeffK = 137 MPaeffµ = 120 MPaeffλ = 31580kg/meff
g gVρ ρ= =

[7] was used with material coefficient ratios  and 
, while that one of gradient elasticity

7/ 24×10 N/mα δ = 2

4 22 26/ 92×10 N/m sβ δ = [18] with material constants  and 
 as well as  and 

-555×10 mg =
/1.034 mh g= -516.5×10 mg = g/1.030mh = . 

One can observe that the experimental results for both types of waves (P and S) show essentially no 
dispersion. The gradient elasticity[18] results are close to the experimental ones and indicate a very small 
dispersion, which however, shows a slight increase for high frequencies. On the other hand, the analytical 
method of porous elasticity[7] for P waves shows a rapid increase of phase velocity with decreasing values of 
frequencies in the low frequency range. However, it shows a good agreement with the experimental results for 
higher frequencies. This theory shows zero dispersion for S waves. Finally, the results of the numerical method 
of IEMA/BEM[14,15] are rather close with the experimental ones only for low frequencies and exhibit more 
dispersion than any other of the methods considered in this work. It appears that the gradient elasticity method 
approaches experimental results better than the other methods and exhibits very small dispersion due to its 
internal microstructure. However, a slight dispersion increase for high frequencies is noticeable. Experimental 
results show zero dispersion. However, measurements near very small frequencies ( 5  cannot be 
considered as reliable, leaving a question whether or not there is really dispersion in that range. 
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Figure 3. Dispersion curves for P waves 
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Figure 4. Dispersion curves for S waves 
 

6 CONCLUSIONS 

On the basis of the preceding analysis and discussion the following conclusions can be stated: 
1) Experimental results exhibit zero dispersion for all frequencies, eventhough measurements for very low 

frequencies cannot be considered as very reliable. 
2) The analytical method of dipolar gradient elasticity due to Mindlin [18] shows results very close to the 

experimental results, eventhough the values of velocities are always above the experimental ones. 
3) The analytical method of porous elasticity due to Cowin and Nunziato [7] agrees with the experimental 

results only for high frequencies and exhibits values of velocity approaching infinity for low 
frequencies. 

4) The numerical method of IEMA/BEM[14,15] provides results rather close to the experimental ones only 
for low frequencies and indicates more dispersion then any of the other methods.  

5) It is apparent that more in depth investigations are needed in order to more clearly understand the 
dynamic behavior of dry sand and assess the performance of the various analytical and numerical 
models in connection not only with wave dispersion, but in addition, with wave attenuation and the 
solution of wave propagation boundary value problems in dry sand. 
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