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Abstract: High-cycle models may be used to estimate the cumulative effects in soil due to many
(millions) of cycles of relatively small strain amplitude (10−4). Such models have been described in
the literature and they may be useful to estimate settlements or for designing compaction strategies.
This paper demonstrates some problems related to the description of fatigue loading. A single
fatigue load increment is a package of cycles quantified by a periodic strain path and by the number
of cycles. Some improvements in the definition of the amplitude are proposed, in particular how to
detrend the strain path and how to isolate the individual oscillations from a complex 6-dimensional
signal. We also present an experimental contribution to the discussion on the Miner’s rule for
cycles showing different polarizations.

INTRODUCTION

Our high-cycle model [2, 4] takes a package of strain cycles as a single input increment and returns
the accumulated strain or stress. Such packages of cycles are single increments of fatigue loading.
Our high-cycle accumulation model deals with the cumulative deformation due to a large number
(say 103 to 107) of load cycles at a small strain amplitude (less than 10−3).

The semi-empirical equations in [2] based on experimental evidence are relatively simple so we do
not repeat them here for the sake of space. A version of the manuscript of [2] can be downloaded
from our homepage 2. We strongly recommend to have [2] at hand while reading this paper.

The fatigue has a different meaning for sand than the usual susceptibility to failure due to cyclic
loading (= CL). CL causes merely an accumulation of deformation or stress relaxation in soil.
Contrarily to the fatigue in metals the strength of soil usually increases during CL due to densifi-
cation. The only exception is the ’undrained strength’ which can temporarily decrease due to CL
under undrained conditions because the pore pressure build-up leads to a decrease of the effective
pressure.

In the simplest case the fatigue loading can be regarded as the number of cycles Nc weighted by
the square of the strain amplitude εampl, which can be written as

∫

(εampl)2dNc. The deformation
paths that result from moving traffic loads or from compaction machines or generally from dynamic
excitation may be quite complex, however. Some mathematical tools are needed to handle them
(e.g. rainflow counting) and to estimate their amplitudes, ovalities and polarizations. Our definition
[2] of amplitude may lead to inaccurate predictions of the accumulation rate, e.g. in cases of strain
paths of somewhat artificial shapes like cross, or diamond. Despite identical size, two seemingly
similar cross-like loops, Fig.1-b and Fig.1-d, lead to a different accumulation.

Yet another problem is related to the counting of cycles. A computational splitting of a single
X-cross loop, Fig. 1-b, into a sequence of two cycles with a rapid polarization change of 90◦ after
each cycle will significantly overestimate the accumulation (because of the large value of fπ as
defined in [2]).

1Ruhr-University Bochum, Germany
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1.0 0.78 0.67

0.67 0.55

2000 x 2000 x

2000 x

2000 x

1000 x 1000 x
+

P

Q

ε

ε

a) b) c)

d) e) 0.55

1000 x

1000 x
+

f) 

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1.0

R
es

id
ua

l s
tr

ai
n 

[%
]

Number of cycles N [-]

2000 x


2000 x


2000 x


2000 x


1000 x


1000 x
 1000 x


1000 x


+ +

all tests:

Pav = 350 kPa, Qav = 100 kPa,

Pampl = 100 kPa, Qampl = 50 kPa, 

ID0 = 0.56 - 0.60 

Figure 1: Left: The shape of cycles (despite of equal spans) affect the rate of accumulation.
The accumulation caused by the circular cycles is taken as the reference (=100%). This
effect has not been included in the model [2] as yet. Right: the accumulation measured in
the laboratory
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Figure 2: Cyclic preloading at an increased stress ratio affects the rate and the direction of
accumulation. This effect has not been included in the model [2, 3] as yet. Left: the idea of
the test; Right: test results

The laboratory tests, Fig. 1, give a deeper insight into the validity of the Palgram-Miner’s rule [1]
for sand. In [2] we have demonstrated that the sequence of application of packages with different
amplitudes does not influence the total accumulation effect. A pleasant observation from the recent
tests is that the same holds for packages with different polarizations, cf. Fig.1-e and -f.

The high-cycle model can predict fairly well the accumulation due to a large number of strain
cycles that follows a monotonic loading. However, if such cyclic loading is preceded by a cyclic
preloading at considerably different average stress, Fig. 2, then both the cyclic flow rule and the
expression for the intensity of accumulation proposed in the model become inaccurate.

TOWARDS A BETTER DEFINITION OF THE FATIGUE LOADING

In [2] we have already given arguments for expressing both the amplitude and the accumulation
in terms of strain rather than stress. We have also discussed how to obtain the strain amplitude



from stress- or mixed - controlled tests. However, several questions related to the definition of the
amplitude still remain open:

• After a full cycle the strain path does not exactly pass through the same strain state (due to
accumulation). Moreover the strain loop may intersect itself like in Fig. 1-b which does not
indicate that the loop is over. It is evident that a mathematical tool is required in order to detect
the period, i.e. when a strain loop is finished.

• Suppose a strain loop has been prescribed by two spans with slightly different frequencies so that
a slow rotation of polarization occurs, Fig. 3 a,b. If two spans were equally polarized the beat
would occur. The hitherto hypothesis either ignores the small spans or overestimates its effect
describing such loading as distinct packages with alternating polarization.
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Figure 3: Strain paths (Lissajous curves) obtained from the superposition of sine functions
with slightly different frequencies and amplitudes a) and b) or with strongly different fre-
quencies but similar amplitudes c)

• It is not clear if smaller but faster cycles in plane with the dominant cycle or out of this plane
may be ignored, Fig. 4.
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Figure 4: Strain paths obtained from the summation of sine functions with very different
frequencies and different amplitudes.

DETRENDING OF THE STRAIN PATH

We deal with a strain path ε(t) or with a stress path σ(t) assuming that its 6 components εij(t) are
given (usually we have a list of 6 strain components parametrized with time t).

Note that contrarily to the strain ε or the strain rate D one cannot find the principal values of the
strain path ε(t) so all 6 components must be considered.
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Figure 5: A hodograph is a trajectory of D(t) ≈ ε̇(t) parametrized with time t, analogously
to the strain path ε(t). The rate of accumulation can be easily identified as a drift rate
(denoted with arrow) of the average strain upon a cycle. Note that the strain rate is an
exactly periodic function D(t) = D(t + NT ) whereas the strain ε(t) is not. The distinction

between the cycles encompassing some area ( out-of-phase cycles (= OOP) , ba ) and the

open-curve cycles ( in-phase cycles (= IP), b ) is of importance.

The resilient strain path εe
ij(t) is obtained from the original (recorded or calculated) signal εij(t)

by subtracting the residual (cumulative) portion (pseudo-creep) from it. This process is known as
a detrending.

The proposed detrending procedure consists of three steps:

• calculate a hodograph ε̇ij(t), Fig. 5

• find the average point of the hodograph ε̇av
ij

• subtract the cumulative portion from the original path: εe
ij(t) = εij(t) − ε̇av

ij t

Analogously, we may proceed with the stress path removing the cumulative portion (pseudo-
relaxation): σe

ij(t) = σij(t)−σ̇av
ij t. Possibly we are given a mixed data with some stress components

σij and some strain components εi′j′ with complementary components i′, j′ with respect to i, j. In
such mixed case the removal of the residual part can be performed componentwise. Next, the stress
components are converted to the strain components using elasticity (elastic material parameters
E, ν assumed as given), i.e. the system of equations σe

ij = Eijklε
e
kl is solved for the missing

components of εe
kl.

SPECTRAL ANALYSIS

The detrended strain path is assumed to be a superposition of individual harmonic signals in the
direction of each strain component. The harmonic signals can be distinguished judging by the
frequency fK (or angular velocity ωK = 2πfK ). From each of six components εij(t) of the strain
path we pick up a portion which corresponds to a common dominant frequency fK . We put these
six signals together and call this sum oscillation. In general it is a 6-dimensional ellipse in the
strain space. In this text the oscillations are numbered with the capital letter K.



We will try to approximate the signal εij(t) as a sum of M oscillations:

εij(t) ≈
M

∑

K=1

εamplK
ij sin(ωKt + ϕK

ij ) (1)

In the detrended strain portion εe
ij(t) we have omitted the index e for brevity.

Apart from the angular velocity ωK the other parameters of an oscillation are the amplitude εamplK
ij

and the phase shift ϕK
ij . They are assumed to remain nearly constant so that the size and the ovality

of the oscillation do not change.

The essential purpose of the present spectral analysis is filtering out spectral components corre-
sponding to the same angular velocity ωK from all strain components εij and collecting them to
a common oscillation. For simplicity this is done only for several dominant frequencies f K with
K = 1, 2, . . . for which the strain amplitudes εampl K

ij are large. Since the square of the amplitude
dictates the accumulation rate the impact of small amplitudes is almost negligible. For example we
may easily neglect amplitudes say 10-times smaller than the largest one at the cost of 1% error only
(this is a rough estimation which assumes that the respective frequencies are not very different).

Each component function εij(t) is treated as a series of discrete values εij(k) given at k =
0, 1, . . . , N − 1 (N is an even number) points equally distributed along the time axis over the
time window from t = 0 to t = (N − 1)∆.

Denoting the sampling interval as ∆ we find the Nyquist frequency fc = 1/(2∆) and the
(complex valued) discrete Fourier transform (DFT) Yij(n) of the discrete strain path εij(k) with
frequencies fn = ωn/(2π) such that −fc < fn < fc. The frequencies are indexed with
n = −N/2, . . . ,−1, 0, 1, . . . N/2 and

Yij(n) ≡
N−1
∑

k=0

εij(k)e
2πIkn/N (2)

where I2 = −1. This DFT approximates the Fourier transform Yij(f) at discrete frequencies fn

according to Yij(fn) ≈ Yij(n)∆ but we will use the DFT only. We assume that our sampling interval
∆ is sufficiently small to capture all strain oscillations of importance and that no higher frequencies
can leak into the (−fc, fc) range (no aliasing).

Plotting the tensorial norm (Einstein summation over the tensorial components ij) we obtain the
periodogram

Y(n) =











|Y |ij(n)|Y |ij(n) + |Y |ij(−n)|Y |ij(−n) for n = 1, 2 . . . , N/2 − 1

|Y |ij(0)|Y |ij(0) for n = 0

|Y |ij(N/2)|Y |ij(N/2) for n = N/2

(3)

and among the frequencies fn = n/(N∆) we may find the one for which the (real valued) function
Y(n) has its maximum. This frequency is denoted as fK and the corresponding angular velocity
ωK = 2πfK enters (1). Technically, since the original signal εij(t) may be a pure sine function with
a frequency lying in the middle between two adjacent fn-s one needs data windowing (apodization,
e.g. Hann or Barlett window) in order to reduce the leakage of frequency.

Having found the dominant frequency fK we filter out a band around this frequency from each
component of the strain. For this purpose we simply multiply each DFT Yij(fn) by the band-pass



filter HK
BP (an even function equal to unity in the vicinity of ±fK and to zero elsewhere) in the

frequency domain. We obtain six fK-band-pass filtered transforms

Y K
ij(n) = HK

BP Yij(n) (4)

which constitute the DFT of the K-th oscillation. The amplitudes εampl K
ij of the strain components

are obtained from the discrete inverse Fourier transform (DIFT)

εij(k) =
1

N

N−1
∑

n=0

Y K
ij(n)e

−2πIkn/N (5)

Among all k-indexed values we find the difference between maximum of εij(k) and minimum of
εij(k) (for each component ij separately). These differences correspond to the double amplitudes
2εamplK

ij of the oscillation K and enter (1). The expression for DIFT contains an n-sum from 0 to
N (instead of from −N/2 to N/2) thanks to the N -periodicity of the DFT, i.e. Yij(−n) = Yij(N−n).

The phase shift ϕK
ij is calculated from the correlation of individual components ij . For example,

we may assume ϕK
11 = 0 and the phase shift ϕK

22 is calculated in the frequency domain using the
product Y K

11 Y ∗K
22 wherein the asterisk denoted the complex conjugation. The phase shift follows

from the time lag τ22 obtained as the time shift for which the DIFT of the above product has the
maximum. Finally we have ϕK

22 = ωKτ22. The K-th oscillation is completely determined by
repeating analogous calculations of correlation for all strain components ij .

The remaining oscillations are selected analogously using the reduced signal

Yij(n) = HK
NOYij(n), (6)

where HK
NO denotes the notch filter (an even function equal to zero in the vicinity of ±fK and to

unity elsewhere). Currently, the fatigue load contributions from the individual oscillations i.e. the
size of the amplitude εamplK = ‖εamplK‖ and the number of cycles Nc enter the fatigue loading
independently. A single load package from a time period T is calculated as T

∑

K fK

[

εamplK
]2 i.e.

without considering the mutual polarizations of different oscillations within the package. One of
the difficulties is the lack of knowledge about accumulation under such complex loading conditions.
If we split the oscillations treating them as short separate packages repeatedly applied after each
other then the factor fπ, responsible for a change of polarization in the model [2], will lead to a
significant overestimation of the accumulation rate.
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