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ABSTRACT: The evolution of the spatial fluctuation of stress in granular materials under cyclic loading was
studied both experimentally and numerically. In the FE calculations a random initial stress field was generated
and a modern high-cycle model was used to study its evolution during cyclic loading. The distribution of
stress was found to be smoothed by the cycles. The purpose of model tests was to determine the spatial stress
fluctuation from measurements of acoustic emissions during a bearing capacity test with a foundation on a fine
gravel. The same initial density was achieved either by pluviation or by cyclic preloading. Interestingly, no
dependence of the intensity of acoustic emission on cyclic preloading could be found.

1 INTRODUCTION

The initial spatial fluctuations of stress are expected
to be smoothed by a high-cyclic loading (i.e. a load-
ing with a large number of cycles but small ampli-
tudesεampl < 10−3). According to the Hertz contact
formula, a smooth distribution of stress should be en-
ergetically advantageous. We put this hypothesis into
question.

The registration of acoustic emission (AE) provides
a qualitative estimation of the intensity of grain crush-
ing or contact rearrangements and hence one may
speculate about the presence of strong stress peaks.
It is well known (Oda and Iwashita 1999) that the
acoustic emission becomes intensive during loading
whereas during unloading or reloading almost noth-
ing is received. Here we attempt to use the acous-
tic emission in order to detect the stress peaks in
the subsoil of a model foundation and to distinguish
between homogeneous and strongly inhomogeneous
stress fields. The load-displacement curve and the in-
tensity of acoustic emission are therefore registered
for the following two cases: a) freshly pluviated gran-
ular material b) loosely pluviated and subsequently
densified (by cyclic loading) granular material. At
identical void ratios, the material with cyclic preload-
ing was expected to have fewer stress peaks and to
cause less noise during loading.

The evolution of the spatial fluctuation of stress
during cyclic loading was also tested numerically us-
ing the high-cycle model recently proposed by the
authors (Niemunis et al. 2005) and the FE program
ABAQUS. Spatially correlated fluctuation fields have

been generated and subject to cyclic loading.
Finally, the evolution of stress concentrations dur-

ing cyclic loading in the experiments and in the FE
calculations are compared.

2 RANDOM MODELLING OF SOIL AND FE
CALCULATIONS

Various properties of soil may be considered as ran-
dom. In the present work, the void ratioe and stress
T are of primary interest. Their scatter over a cer-
tain volume of soil is modelled by random fields dis-
cretized on the FE mesh.

2.1 Random void ratio
In order to generate a scalar random field of the void
ratio, we need the estimates of its characteristic val-
ues, e.g. the mean, the variance and the spatial corre-
lation. Such estimates may be extracted from in-situ
measurements. For example, the mean of the respec-
tive parameter of a known sample ofn measurements
reads

E[t] =
1

n

n∑

i=1

ti . (1)

Alternatively a maximum likelihood estimator (MLE)
could be used, (DeGroot and Beacher 1993; Fenton
1999). The estimator should beunbiased(the esti-
mated average of a population is equal to the mean of
the measured sample) andconsistent(the dispersion
decreases with the size of a sample i.e. the number of
measurements).



First let us examine the void ratioe at a given point
x in space. For a fictitious subsoil considered here, the
mean void ratio is assumed to beē = 0.8 and the prob-
ability density function (PDF) is chosen to be con-
stant and equal to1/0.4 over thee-range from0.6 to
1.0, i.e.σ2 = 0.04/3. We do not use the normal Gaus-
sian distribution here because extremely small or ex-
tremely large void ratios may cause problems in the
constitutive models. Moreover, negative void ratios
are physically impossible.

Let us suppose, we have a statistical sample ofn
measurements ofe taken at various locationsxi with
i = 1, . . . , n and the void ratio at a pointxi is related
to the void ratio at a pointxj. For allm pairs(i, j) of
pointsxi xj of a given statistical sample (set ofn mea-
surements) lying at a given distanced we may quan-
tify the difference of the void ratios. Furthermore, let
this difference be isotropic, i.e. independent of the ori-
entation of the vectorxi − xj. Having measured the
void ratioe(x) over some area we can distinguish its
trend ē(x) (a mean value, often estimated by linear
regression) and scatterẽ(x):

e(x) = ē(x) + ẽ(x). (2)

For simplicity, we assume that the void ratio does not
decrease with the depth, i.e. the trend to be equal to
the mean,̄e(x) = 0.8. The autocorrelation of the scat-
ter ẽ = e− ē could be evaluated from measurements
using the moment estimate of the isotropic autoco-
variance of̃e. For a typical pair of points at distanced
it is

ρ(ẽ(x), d) =
1

σ2m

n∑

i

n∑

j

ẽ(xi)ẽ(xj)w(xi,xj), (3)

wherein w(xi,xj) =
{

1 if ‖xi − xj‖ ≈ d
0 otherwise ,

n is the total number of points andm(d) =∑n
i

∑n
j w(xi,xj).

For our fictitious subsoil we assume the Markovian
(exponential) spatial correlation function between the
void ratiosẽ at pointsxi andxj at distanced = ‖xi −
xj‖ according to

ρ(ẽ, d) = exp (−d/θ) , (4)

whereinθ denotes the correlation length.
Soil properties may vary at many scales (fractally)

so the value ofθ depends on the size of the prob-
lem. Using the estimations ofθ from the literature
one should select a correlation length estimated on
a similar soil over a domain of a similar size (Fen-
ton and Griffith 2002). Of course, we have to choose
a value between the limit casesθ → 0 and θ → ∞
for which the void ratios are either fully uncorrelated

(statistically independent) or perfectly correlated, re-
spectively. Some recommendations for the choice of
θ were given by (Fenton and Griffith 2002). In the nu-
merical examples presented furtherθ = 0.02 m was
chosen.

In the FE calculations quadrilateral elements with
four Gauss integration points were used. Various pos-
sibilities of random field discretization are reported
in the literature (Matthies et al. 1997). For simplicity
reasons, we discretize the random field of void ratios
e by the FE mesh using the mentioned Gauss points.

The field variability is described by the following
isotropic autocorrelation function:

Cij = σ2 exp

(
−dij

θ

)
(5)

with

dij = ‖xi − xj‖, (6)

σ =
1

2
√

3
(emax − emin), (7)

andemax = 1.0, emin = 0.6.
This matrixC is then transformed to the uncorre-

lated space by the orthogonal transformation (spec-
tral decomposition) based on its eigenvaluesΛ =
diag{λ1, . . . , λn} and an orthogonal matrixΦ,

C = Φ ·Λ ·ΦT . (8)

The matrixΦ is composed of orthonormalized eigen-
vectors (in columns, numbering same as forλ-s),
Φ = {Φ1, . . . ,Φn}.

The fieldẽ(x) is generated by using all eigenvalues
(although (Novak et al. 2001) suggests using only a
few largest ones) and the corresponding eigenvectors
Φi, i = 1, . . . , n multiplied by random factors, viz.

ẽ(x) =
n∑

i=1

r
[−1,1]
i

1

2

√
λiΦi (9)

whereinr[−1,1] is a uniform variate (random real num-
ber with constant PDF) from the range[−1,1] andλi

is the i-th eigenvalue ofC. Of course one may eas-
ily find r[−1,1] = 2r[0,1]− 1 using the intrinsic random
functionr[0,1] provided in all programming languages.
The final field of void ratios is obtained from (2).

A set of Nsim fields (=simulations)̃e(x) could be
generated directly using (9), with randomr[−1,1] (=
Monte Carlo method). We usually apply a so-called
Latin Hypercube Sampling (LHS), (Florian 1992) to
enforce the full range of variability of the void ratios
with smaller number of simulations.



2.2 Evolution of the fluctuation of the void ratio
Under homogeneous stress conditions the cyclic load-
ing must lead to smoothing of spatial fluctuations of
the void ratio because loose sand densifies faster than
dense sand.

It is possible to observe the evolution of the fluctu-
ation of the void ratio of a sand sample directly from
the analysis of X-ray images. However, it is much eas-
ier to observe the fluctuation of thechangesof volume
or generally of the increments of strains. Such study
with the particle image velocimetry technique (PIV)
was used by (Niemunis 2003) to find the smoothing
effect of the cyclic preloading (40 000 cycles) on the
spatial fluctuation of subsequent strain increments.
Contrarily to the theoretical tendency to spontaneous
smoothing no such effect could be observed, neither
in the rate of strain accumulation nor in the amplitude.

2.3 Random geostatic stress field
Some mechanical properties of soil may be related
to the number of the force chains between individ-
ual grains of soil which contribute to the transfer of
the applied load. At a given pressure and a void ratio
we may consider a situation with few chains but each
carrying large forces or a situation with many moder-
ately loaded chains. The behaviour of soil is expected
to be different in both situations.

Our aim is to express this micro-mechanical differ-
ence by the spatial fluctuation of stress using the FE
techniques. The total stressT is assumed to consist of
its trend (volume average)̄T and its fluctuatioñT

T = T̄ + T̃ with 〈T̃〉 = 0 (10)

where〈 〉 denotes volume averaging.
One method to add spatial fluctuations to the ini-

tial stress field is to variate the individual components
of stressTij(x) about the geostatic stress treated as a
trend. All components were generated independently
as spatially correlated scalar random fields. The fluc-
tuation was not strong so that the yield criterion by
Matsuoka & Nakai (M-N criterion) (Matsuoka and
Nakai 1977)

y ≡ tr T tr R− φ < 0 (11)

with R = T−1 and φ =
9− sin2 ϕ

1− sin2 ϕ
= 0

was satisfied everywhere (ϕ denotes the friction angle
and trT tr R = I1I2/I3). However such ”rough” stress
field (e.g. Fig. 1a) was not in equilibrium and has to
undergo the equilibrium iteration procedure (an ini-
tial stress problem in FE). In the redistributed stress
field (Fig. 1b, obtained after a direct equilibrium iter-
ation with an elastoplastic model with M-N-criterion

of ϕ = 25◦ and small stiffness:E = 500 kPa,ν = 0)
the initial fluctuations are slightly smoothed. The pat-
tern of the fluctuation does not correspond to the FE
discretization (no mesh alignment) presumably due to
the spatial correlation of the disturbance. Note, how-
ever, that our equilibrated self-stress results from the
low order of the shape functions within the FE and
from the stress jumps on the element borders rather
than from the true (physical) incompatibility of the
strain field

T̃ij = Eijklε̃kl (12)

with eakreblsε̃kl,rs = −ηab and T̃ij,j = 0i

whereebls is the permutation symbol andηab is an
arbitrary tensor of strain incompatibility. A random
generation of the fieldηab(x) to obtain T̄ij(x) from
(12) would necessitate a higher order smoothness of
the strain field which might be difficult within the
framework of a conventional FE analysis. Therefore
we do not generate the stress fluctuations basing on
the strain incompatibility.

Another method to add spatial fluctuations to the
initial stress field is to generate a randomstiffness
field and then to apply the self weight. Both elastic
parametersν,E can be varied (usage of anisotropic
elasticity would be of interest). The trend of stiffness
E is chosen to increase with depth and the trend of
Poisson ratioν = 1

3
rendersK0 ≈ 1

2
as desired. Ad-

mittedly the procedure is artificial (does not repro-
duce any pluviation or sedimentation process) but we
are interested solely in the final stress field. Although
the resulting stress field is in equilibrium it does not
necessary satisfy (11). Therefore, similarly as in the
previously described method our stress field should
undergo the equilibrium iteration procedure, a direct
initial stress problem using the elastoplastic model.
As previously no mesh alignment was observed.

Yet another possibility to introduce stress fluctua-
tion into a constitutive model could be its descrip-
tion by an additional state variable which does not
appear directly in the equilibrium condition but influ-
ences stiffness and the evolution of stress. We may
assume that the equilibrium condition need to be sat-
isfied by the average stress (without fluctuations) only
and do not bother about the equilibrium on the micro-
level. Suppose we choose a plane cross-section in soil
which intersects many force chains. Our interest is not
the average stress vector but the variability of force
from one force chain to another. This variability may
depend on the orientation of our cross-section so it
can conveniently be expressed by a directional (ten-
sorial) variable. Formulation of relevant structure ten-
sors is discussed e.g. by Kanatani (Kanatani 1981;
Kanatani 1984; Kanatani 1985). The so-called inter-
granular strain (Niemunis and Herle 1997) or the back
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Figure 1.ContoursT11 = const a) obtained from the rough stress field generated with randomness proportional to the
mean pressure, b) after the rough field has been brought to equilibrium obeying the M-N yield criterion, c) smoothed in
the course of cyclic loading. The equilibrium condition and the M-N yield criterion are satisfied.

stress can be interpreted using such variability (Gude-
hus 2007).

The final remark in this section concerns the elas-
tic energy of the spatially fluctuating stress field. It
has been shown (Triantafyllidis and Niemunis 2000;
Niemunis 2003) that according to the Hertz contact
formula, a smooth distribution of stress should be en-
ergetically advantageous. Therefore one can expect a
spontaneous smoothing of the fluctuations in soil. The
Hill’s condition (used in homogenization) states that
the power densities on the micro- and the macro-level
are identical, i.e.〈T : D〉 = 〈T〉 : 〈D〉, where〈 〉 de-
notes averaging over the same volume. This condition
holds for either uniform boundary tractions or lin-
ear boundary displacements (Nemat-Nasser and Hori
1993) independently of the material model. Hence, in
these cases the Hill’s condition contradicts the con-
clusion (Triantafyllidis and Niemunis 2000; Niemu-
nis 2003) about the spontaneous smoothing.

2.4 Evolution of stress fluctuation during cyclic
loading

Judging by the constitutive equations of our high-
cycle model (Niemunis et al. 2005) describing the in-
tensity of the accumulation one cannot easily predict
the evolution of the stress fluctuation. On one hand
the deviatoric stress peaks increase the accumulation
which has a smoothing effect but on the other hand
the rate of accumulation is larger at lower mean pres-
sure which leads to a positive feed-back effect. The
mean pressure should quickly decrease where it is low
already. Hence the fluctuations in the mean pressure
should grow. From the numerical example we con-
clude that the first phenomenon prevails and the fluc-
tuations dwindle with the number of cycles.

In the presented example 100 cycles with a uniform
strain amplitude of0.05% were applied to the numer-
ical model. The fluctuations of the initial stress have
been significantly smoothed in the course of such

cyclic loading. This effect is evident from Figures 1b
and 1c.

3 MODEL TESTS WITH ACOUSTIC EMISSION
MEASUREMENTS

Crushing of grains or chipping of the grain edges or
changes in contacts occur at large stress ratios and
produce acoustic emissions (AE). A strong spatial
stress fluctuation goes together with a large number of
locations with high stress ratios and should thus lead
to larger rates of AEs. We have compared the AEs
of freshly pluviated and cyclically preloaded gran-
ular material in model tests with a strip foundation
which was subjected to a monotonic displacement-
controlled loading (bearing capacity test). A scheme
is presented in Figure 2.

F (applied with a load press)

       soil

 (fine gravel,

d50 = 4.4 mm)

34 cm

4 cm

2
8

 c
m

acceleration 

transducer

plate made of

stainless steel

(thickness  2 mm)

box (width 10 cm)

with plexiglas walls

latex membrane

(thickness 1 mm)

plates

6 x 6 cm

Figure 2. Scheme of the model test

As confirmed by preliminary tests, the intensity
of AEs increases with increasing mean diameter of
the grains. Thus, all tests were performed on a fine
gravel (mean grain diameterd50 = 4.4 mm, non-
uniformity coefficientCu = d60/d10 = 1.3, subangular



grain shape, minimum void ratioemin = 0.669, max-
imum void ratioemax = 0.851 according to German
Standard Code DIN 18126). The grain size distribu-
tion curve is given as curve No. 6 in Figure 4.14 in
(Wichtmann 2005).

The testing program is summarized in Table 1. Ex-
cept test No. N1 (where the fine gravel was placed
with a spoon) the test material was pluviated out
of a funnel. Seven tests (Nos. N1 to N7) were per-
formed on such ”freshly pluviated” material, i.e. with-
out cyclic preloading. In six other tests (Nos. P1 to P6)
the soil was placed in approx. 3 cm thick, originally
loose layers (ID = (emax − e)/(emax − emin) ≈ 0.22)
and afterwards each layer was compacted by vibra-
tion, i.e. a certain number of blows against the walls
of the model test box using a rubber hammer.

Table 1. Testing program (IDp, ID0 = relative densities af-
ter pluviation and prior to the bearing capacity test)
Test IDp Compaction: ID0

No. Hits per layer
N1 0.22 - 0.22
N2 0.22 - 0.22
N3 0.60 - 0.60
N4 0.77 - 0.77
N5 0.88 - 0.88
N6 1.06 - 1.06
N7 1.12 - 1.12
P1 ≈ 0.22 4 0.55
P2 ≈ 0.22 10 0.69
P3 ≈ 0.22 20 0.89
P4 ≈ 0.22 20 0.91
P5 ≈ 0.22 40 1.04
P6 ≈ 0.22 40 1.04

The model foundation was placed on the soil sur-
face without embedding. A gap of approximately 0.5
mm maintained between the walls of the model test
box and the foundation in order to keep friction as
small as possible. The plexiglas walls of the model
test box had a sufficient thickness to keep lateral de-
formations small.

The bottom of the model foundation (width 4 cm)
consisted of a thin steel plate (thickness 2 mm) on
which an AE transducer of the accelerometer type was
fixed. Its signal was amplified and sampled continu-
ously with a frequency of 10 kHz. Also the axial load
and the axial displacement were measured. Guidance
of the foundation in the axial direction was achieved
by two plates (6× 6 cm) separated by a membrane for
isolating the foundation from noise generated by the
load press. The displacement-controlled loading was
applied with a velocity of 5 mm/min.

Figure 3 presents the record of acceleration during
test No. P5 and Figure 4 shows a zoom of three AE
events. The AE events were counted using the ”Event
Count Method” (Oda and Iwashita 1999). The dura-
tion of an AE event was usually less than 0.005 s. The

cumulative number of AE events is denoted asNAE.
The amplitudeAAE of an AE event was defined as the
largest absolute value of acceleration (Fig. 4). AE sig-
nals with amplitudes lower than 0.5 m/s2 were treated
as background noise and thus were ignored. The rate
of AE eventsṅAE = ∆NAE/∆t was calculated using
a time period of∆t = 5 seconds.
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Figure 3.Acoustic emission during test No. P5
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Figure 4. Typical acoustic emission signals during test
No. P5

The exemplary diagrams in Figures 5, 6 (tests with-
out cyclic preloading) and Figures 7 to 8 (tests with
cyclic preloading) present the external forceF , the
square of the amplitude(AAE)2 divided by noise (=
0.5 m/s2), the rateṅAE and the average amplitude
ĀAE = ∆

∑
AAE/∆NAE during a time period∆t = 5

seconds as functions of settlement. Interestingly, the
most pronounced AE events with large amplitudes
seem not to correlate with significant drops in the
curve of external load. The ratėnAE increases with
the applied loadF due to increased stress ratios in
the soil. As the bearing capacity also the rateṅAE in-
creases with increasing initial densityID0. The aver-
age amplitudeĀAE seems to be almost independent
of F andID0.

Figure 9 shows the cumulative count of AE events
NAE for six tests, three of them were performed with
freshly pluviated material and three other ones with
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Figure 5. Test No. N2
(ID0 = 0.22)
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Figure 6. Test No. N5
(ID0 = 0.88)
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Figure 7. Test No. P2
(ID0 = 0.69)
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Figure 8. Test No. P5
(ID0 = 1.04)

cyclically preloaded soil. Figure 10 presents an anal-
ogous diagram for

∑
AAE. The shape of the curves

in these two figures seems not to depend on cyclic
preloading.

The valuesNAE and
∑

AAE at a settlement ofs =
20 mm were plotted as a function of the initial rel-
ative density in Figures 11 and 12, respectively. The
data points from the tests with cyclic preloading do
not vary significantly from those obtained in the tests
on freshly pluviated material. Thus, the rate and the
amplitude of AE events seem not to depend on cyclic

preloading. Therefore, the experiments provide evi-
dence that the initial spatial stress fluctuation is inde-
pendent on cyclic preloading.
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4 CONCLUSIONS
FE calculations with random initial stress fields using
a high-cycle model gave evidence that cyclic loading
leads to a smoothing of the spatial stress fluctuations.
A simple bearing capacity test was used to detect the
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inhomogeneities in the stress experimentally. At first
we expected that a cyclic preloading of the subsoil
would smooth the stress field in the subsoil and for the
same void ratio and same load we would obtain less
settlement and less acoustic emission. The tests per-
formed with a physical 1-g model of relatively small
dimensions with a strip foundation pressed into the
soil have shown almost identical load-displacement
curve and identical intensities of the acoustic emis-
sion independently of cyclic preloading.
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Universiẗat Bochum, Heft Nr. 34. available from
www.pg.gda.pl/∼aniem/an-liter.html.

Niemunis, A. and I. Herle (1997). Hypoplastic model
for cohesionless soils with elastic strain range.Me-
chanics of Cohesive-Frictional Materials 2, 279–
299.

Niemunis, A., T. Wichtmann, and T. Triantafyllidis
(2005). A high-cycle accumulation model for sand.
Computers and Geotechnics 32(4), 245–263.

Novak, D., W. Lawanwisut, and C. Bucher (2001).
Simulation of random fields based on orthogonal
transformation of covariance matrix and Latin Hy-
percube Sampling. In G. Schueller and P. Spanos
(Eds.), Monte-Carlo Simulation, pp. 129–136.
Balkema.

Oda, M. and K. Iwashita (1999).Mechanics of Granular
Materials. Balkema, Rotterdam.

Triantafyllidis, T. and A. Niemunis (2000). Offene
Fragen zur Modellierung des zyklischen Ver-
haltens von nichtbindigen B̈oden. In Beiträge
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