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ABSTRACT

The paper presents an experimental study in order to quantify the isotropic hypoelastic stiff-
ness tensor E of the high-cycle accumulation (HCA) model proposed by Niemunis et al. [1]. E

interrelates stress and strain accumulation rates and not stress and strain increments. A pressure-
dependent bulk modulus K and a constant Poisson’s ratio ν are assumed. The bulk modulus of
medium-dense fine uniform sand was determined from 12 pairs of drained and undrained cyclic
triaxial tests. It is demonstrated that, within the investigated range, K does not depend on
the amplitude-pressure-ratio. The bulk modulus measured for the fine sand is of similar magni-
tude as the K-values obtained in an earlier study on a medium coarse sand. The drained and
undrained cyclic tests were recalculated using the HCA model. The good agreement between
predicted and experimental data is demonstrated in the paper.
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INTRODUCTION

The high-cycle accumulation (HCA) model proposed by Niemunis et al. [1] can be used for the
prediction of settlements or stress relaxation (e.g. excess pore water pressure accumulation) in
non-cohesive soils due to a large number (N > 103) of cycles with relative small strain amplitudes
(εampl < 10−3) (so-called high- or polycyclic loading). The HCA model may be applied for
example to foundations of on- and offshore wind power plants, to machine foundations or to
foundations subjected to traffic loading. The HCA model is based on an extensive laboratory
testing program with drained cyclic triaxial and multiaxial DSS tests (Wichtmann [3]).

The experimental study presented in the paper is dedicated to the isotopic hypoelastic stiffness
tensor E in the basic constitutive equation of the HCA model:

σ̇
′ = E : (ε̇ − ε̇

acc − ε̇
pl) (1)

In Eq. (1) the superposed dot means a rate with respect to the number of cycles N (i.e. an
increment per cycle). The colon denotes a double contraction (Gibbs notation). σ̇

′ is the rate
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of effective stress, ε̇ the strain rate, ε̇
acc the prescribed rate of strain accumulation and ε̇

pl a
plastic strain rate preventing stress paths from passing the yield surface. The rate of strain
accumulation is calculated as a product of a scalar intensity of accumulation ε̇acc and a direction
of accumulation m (unit tensor):

ε̇
acc = ε̇accm (2)

The intensity of accumulation is calculated as the product of six functions each considering a
separate influencing parameter:

ε̇acc = fampl fe fp fY ḟN fπ (3)

The functions fampl, fe, fp and ḟN describing the influences of strain amplitude, void ratio,
average mean pressure and cyclic preloading are introduced in the section on the test results.
The function fY capturing the dependece of ε̇acc on average stress ratios ηav = qav/pav and the
function fπ considering the effect of polarization changes are unimportant here because the tests
were performed with isotropic average stresses (η = 0 = const., i.e. fY = 1) and with a constant
polarization (fπ = 1).

Depending on the boundary conditions (e.g. stress or strain control in element tests), Eq. (1)
predicts a change of the average stress (σ̇′ 6= 0) and/or an accumulation of residual strain
(ε̇ 6= 0). The stiffness E in Eq. (1) is important for boundary value problems showing a significant
stress relaxation due to cyclic loading (e.g. pile foundations). At present an isotropic hypo-elastic
tensor is used for E. Therefore, two elastic constants, e.g. bulk modulus K and Poisson’s ratio
ν have to be determined.

In elastoplastic models E would be determined experimentally from a small unloading (at the
absence of plastic strain ∆ε

pl), comparing the stress increment ∆σ
′ with the strain increment

∆ε:

∆σ
′ = E : (∆ε − ∆ε

pl
︸︷︷︸

0

) (4)

This procedure is not applicable to HCA models. E has to be determined from cyclic tests, in
particular from a comparison of cyclic creep and cyclic relaxation tests performed with the same
average stress and density.

A first experimental study on K has been documented by Wichtmann et al. [5]. The pressure-
dependent bulk modulus of medium dense, medium coarse uniform quartz sand (mean grain
size d50 = 0.55 mm, coefficient of uniformity Cu = d60/d10 = 1.8, obtained from a sand pit near
Dorsten, Germany) was quantified from 15 pairs of drained and undrained cyclic triaxial tests
and described by:

K = A patm
1−n pn (5)

with the reference pressure patm = 100 kPa and with constants A = 467 and n = 0.46. However,
due to the coarse grains the undrained test data had to be corrected with respect to membrane
penetration effects. The method proposed by Tokimatsu et al. [2] was applied. An inaccuracy
of the parameters A and n proposed for Eq. (5) may be caused by uncertainties associated with
this correction.

Therefore, a new experimental study has been performed on a fine uniform quartz sand (d50 =
0.14 mm, Cu = 1.5, obtained from a sand pit near Ludwigshafen, Germany) for which membrane
penetration effects are negligible. The present paper reports on the experimental results of this
study.
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EXPERIMENTAL DETERMINATION OF K AND ν

The bulk modulus K can be obtained from a pair of drained and undrained cyclic tests with
similar initial conditions and with similar cyclic loading. In the axisymmetric case, Eq. (1) can
be rewritten with Roscoe’s invariants:

[
ṗ
q̇

]

=

[
K 0
0 3G

] [
ε̇v − ε̇accmv

ε̇q − ε̇accmq

]

(6)

[
mv

mq

]

=
1

√
1
3(p − q2

M2p
)2 + 6( q

M2 )2

[

p − q2

M2p

2 q
M2

]

(7)

with mean pressure p = (σ′

1+2σ′

3)/3, deviatoric stress q = σ′

1−σ′

3, volumetric strain εv = ε1+2ε3

and deviatoric strain εq = 2/3(ε1−ε3). σ′

1, σ′

3 and ε1, ε3 are the axial and the horizontal effective
stress or strain components, respectively. G is the shear modulus, mv and mq are the volumetric
and the deviatoric portions of the flow rule m, respectively. Omitting ε̇

pl in Eq. (1) is legitimate
for homogeneous stress fields if the cyclic loading is not overlaid by monotonic loading. The
critical stress ratio M is defined as

M =







Mc for η ≥ 0
(1 + η/3)Mc for Me < η < 0
Me for η ≤ Me

(8)

with Mc =
6 sinϕc

3 − sinϕc

and Me = − 6 sinϕc

3 + sinϕc

(9)

wherein ϕc is the critical friction angle and η = q/p. For isotropic average stress conditions (q
= 0, q̇ = 0, mq = 0), Eq. (6) takes either the form of isotropic relaxation

ṗ = −K ε̇acc mv ↔ u̇ = K ε̇acc mv (10)

under undrained conditions (ε̇v = 0) or the form of volumetric creep

ε̇v = ε̇acc mv (11)

under drained conditions (ṗ = 0). Comparing these equations one may eliminate ε̇acc mv and
obtain

K = u̇/ε̇v (12)

Therefore, the bulk modulus K can be calculated from Eq. (12) with the rate u̇ of pore pressure
accumulation obtained from an undrained cyclic test and with the rate ε̇v = ε̇acc

v of volumetric
strain accumulation from a drained cyclic test with similar initial conditions and with similar
cyclic loading.

Poisson’s ratio ν can be determined from the evolution of the average effective stress in an
undrained cyclic triaxial test with constant strain amplitude commenced at an anisotropic initial
stress (see the example in Figure 1). For ε̇v = 0 and ε̇1 = 0 and therefore ε̇q = 0 one obtains:

[
ṗ
q̇

]

=

[
K 0
0 3G

] [
−ε̇accmv

−ε̇accmq

]

(13)

The ratio of the relaxation rates q̇/ṗ, that means the inclination of the average effective stress
path depends on ν:

q̇

ṗ
=

3G

K

mq

mv

=
9(1 − 2ν)

2(1 + ν)

1

ω
↔ ν =

9 − 2ω(q̇/ṗ)

18 + 2ω(q̇/ṗ)
(14)
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with the strain rate ratio

ω =
ε̇acc
v

ε̇acc
q

=
mv

mq

=
M2 − (ηav)2

2ηav
(15)

The index ”av” denotes the average value during a cycle. An experimental study on Poisson’s
ratio ν for the HCA model has been presented by Wichtmann et al. [6]. For fine sand, a value
of ν = 0.32 works well in most cases.
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Fig. 1: Average effective stress paths in undrained
cyclic triaxial tests with constant strain amplitude
predicted by the HCA model for different Poisson’s
ratios ν
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Fig. 2: Volumetric strain versus time in a drained
cyclic triaxial test

SAMPLE PREPARATION AND TESTING PROCEDURE

Twelve pairs of drained and undrained cyclic triaxial tests were performed. The cylindrical sam-
ples (diameter d = 10 cm, height h = 10 cm) were prepared by air pluviation and subsequently
saturated with de-aired water. The two samples of a test pair were prepared with similar initial
void ratios and consolidated under the same isotropic effective stress. The two samples were
loaded with the same deviatoric stress amplitude, one under drained and the other one under
undrained conditions.

All samples were medium dense. Four different initial effective mean pressures (p0 = 50, 100, 200
and 300 kPa) were tested. For each pressure, three test pairs with different amplitude-pressure
ratios ζ = qampl/p0 = 0.2, 0.25 or 0.3, respectively, were performed. The loading was applied
with a constant displacement rate of 0.02 mm/min (strain rate ε̇1 ≈ 0.02 %/min).

In all tests (drained and undrained) the first cycle was applied drained due to the following
reasons. The first cycle may be irregular and may generate much more deformation than the
subsequent regular ones. The HCA model predicts the accumulation due to the regular cycles
only. In numerical calculations with the HCA model the first cycle is calculated using a con-
ventional incrementally nonlinear constitutive model (see Niemunis et al. [1]). Since the initial
conditions at the beginning of the regular cycles were intended to be similar in the drained and
in the undrained tests, the first cycle was applied drained in both types of tests.

TEST RESULTS

Drained tests

The data from the drained tests can be used for both, the quantification of bulk modulus K
and the determination of the parameters used in the functions fampl, fe, fp and ḟN of the HCA
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Parameter ϕc Campl Ce eref = emax Cp CN1 CN2 CN3

Value 33.1◦ 1.40 0.55 1.054 0.23 1.22 · 10−4 0.64 0

Table 1: HCA model parameters for the fine sand

model.

In accordance with Eq. (15), a significant accumulation of volumetric strain was observed in
the drained cyclic tests (see the example in Figure 2), while the deviatoric strain accumulation
was negligibly small. The left-hand side of Figure 3 presents the measured accumulation curves
εacc
v (N). For a certain average mean pressure pav, the accumulation rate increased with increasing

stress amplitude. This is also evident in Figure 4a, where the residual strain after N = 10,
100 and 1000 cycles is plotted versus a mean value εampl = 1/N

∫
εampl(N)dN of the strain

amplitude. The strain amplitude slightly decreased with N , because the tests were performed
with a constant stress amplitude. On the ordinate of Figure 4a the residual volumetric strain
has been divided by the void ratio function f e of the HCA model in order to purify the data
from slightly different initial void ratios and different compaction rates:

fe =
(Ce − e)2

1 + e

1 + eref

(Ce − eref)2
(16)

wherein eref = emax is a reference void ratio and Ce is a material parameter (see Table 1). The
bar over fe in Figure 4a indicates that the void ratio function has been calculated with a mean
value e = 1/N

∫
e(N)dN of void ratio. Data for larger amplitude-pressure-ratios ζ = 0.35 and

0.40 was supplemented in the diagram for pav = 200 kPa. The amplitude function

fampl = (εampl/εampl
ref )

Campl (17)

with εampl
ref = 10−4 was fitted to the data in Figure 4a delivering the parameter Campl for different

pav- and N -values. A mean value Campl = 1.4 (see Table 1) is used in the following.

Some additional tests with different initial densities were performed in order to determine the
parameter Ce of fe. The intensity of strain accumulation increases with increasing void ratio
(Figure 4b). A curve-fitting of fe to the data in Figure 4b delivered a mean value Ce = 0.55. Since
fampl is necessary to purify the data in Figure 4b (due to slightly different strain amplitudes) and
fe is used on the ordinate in Figure 4a, the determination of Campl and Ce was done iteratively.

The barotropy function

fp = exp [−Cp (pav/pref − 1)] (18)

with a reference pressure pref = 100 kPa describes the increase of the accumulation rate with
decreasing pressure. Its parameter Cp was obtained from a curve-fitting of Eq. (18) to the data
plotted in Figure 4c. It shows the residual volumetric strain after different numbers of cycles,
divided by f ampl and fe, as a function of the average mean pressure. The division by f ampl is
necessary because the strain amplitude considerably increases with increasing pressure due to
the constant amplitude-pressure-ratio ζ. Three diagrams for the different ζ-values of 0.2, 0.25
and 0.30 are given in Figure 4c. A mean value Cp = 0.23 was obtained from the curve-fitting
and is used in the following.

The parameters CN1 = 1.22·10−4, CN2 = 0.64 and CN3 = 0 were determined from a curve-fitting
of the function

√
3fN =

√
3CN1[ln(1 + CN2N) + CN3] (19)
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Fig. 3: Accumulated volumetric strain in the drained tests (left-hand side) and accumulated excess pore
water pressure in the undrained tests (right-hand side) versus number of cycles, initial relative density
ID0 = (emax − e0)/(emax − emin) with emax = 1.054 and emin = 0.677
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to the data in Figure 4d. In that figure, the accumulation curves εacc
v (N) were divided by f ampl,

fe and fp in order to purify the data from the influences of amplitude, void ratio and pressure.
For isotropic stress conditions, εacc

v (N) =
√

3εacc(N) holds (compare the flow rule of the HCA
model, Eq. (15)). The function fN in Eq. (19) represents the integral of the function ḟN of the
HCA model

ḟN = CN1

[

CN2 exp

(

− gA

CN1 fampl

)

+ CN3

]

(20)

which describes the decrease of the accumulation rate with increasing cyclic preloading, quanti-
fied by the historiotropic variable gA:

gA =

∫

fampl

[

CN1CN2 exp

(

− gA

CN1 fampl

)]

dN (21)

For uniform sands, the parameter CN3 influences the rate of strain accumulation for large num-
bers of cycles (N > 104, Wichtmann et al. [4]) only. Therefore, CN3 was set to zero here.

The HCA model with the parameters summarized in Table 1 was used for recalculations of
the drained cyclic tests. The initial void ratios and the measured strain amplitudes εampl(N)
were used as input. The thick solid curves in the diagrams on the left-hand side of Figure 3
were obtained from these recalculations. The experimental data and the prediction by the HCA
model agree quite well.
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Undrained tests

An accumulation of pore water pressure was observed in the undrained cyclic tests (see the
example in Figure 5). After ”initial liquefaction” (when σ ′

1 and σ′

3 became temporarily zero
for the first time) the axial strain amplitude increased considerably with each subsequent cycle
(Figure 6). In Figure 7, the effective stress paths from all twelve undrained cyclic tests are
presented in the p-q-plane.

The curves of the excess pore water pressure versus the number of cycles are given on the
right-hand side of Figure 3. For a given initial pressure, the diagrams show the well-known
increase of the rate of pore water pressure accumulation u̇ with increasing amplitude-pressure-
ratio ζ = qampl/p0.

Bulk modulus from a comparison of drained and undrained cyclic test data

For the twelve pairs of drained and undrained cyclic tests the bulk modulus K was calculated
from Eq. (12). The rate u̇ ≈ ∆u/∆N of pore water pressure accumulation was obtained from the
undrained tests while the rate ε̇acc

v ≈ ∆εacc
v /∆N of volumetric strain accumulation was derived

from the corresponding drained test data. In contrast to the study documented by Wichtmann
et al. [5], the undrained test data were not corrected by membrane penetration effects since
these effects are negligible for the tested fine sand.

In ideal case all state variables (average stress, density, cyclic preloading, strain amplitude)
should be identical in the drained and in the undrained test. Otherwise Eq. (12) does not hold.
However, despite similar values of the initial effective mean pressure p0, initial void ratio e0 and
deviatoric stress amplitude qampl, the conditions in the undrained and in the drained cyclic tests
diverged with increasing number of cycles. In the undrained tests the average effective mean
pressure pav decreased and the strain amplitude εampl increased. In the drained tests the void
ratio and the strain amplitude slightly decreased. In order to calculate K from Eq. (12) it is
important to evaluate u̇ and ε̇acc

v for exactly the same state, that means same values of εampl, e,
pav and cyclic preloading. The possible discrepancies must be corrected by a factor fc consisting
of four multipliers:

fc =
fUD
ampl

fD
ampl

fUD
e

fD
e

fUD
p

fD
p

ḟUD
N

ḟD
N

(22)

The indices ”UD” and ”D” indicate the undrained or drained test, respectively. The functions
fampl, fe, fp and ḟN of the HCA model have been introduced above. They were calculated with



Prediction of drained and undrained cyclic behaviour of a fine sand using a high-cycle
accumulation model 9

0

10

20

0 10 20 30

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

-20

-10

40 50 60

p0 = 50 kPa, ζ = 0.2, ID0 = 0.58

0

10

20

0 10 20 30

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

-20

-10

40 50 60

p0 = 50 kPa, ζ = 0.25, ID0 = 0.54

0

10

20

0 10 20 30

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

-20

-10

40 50 60

p0 = 50 kPa, ζ = 0.3, ID0 = 0.60

0

20

40

0 20 40 60
-40

-20

80 100

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 100 kPa, ζ = 0.2, ID0 = 0.61

0

20

40

0 20 40 60
-40

-20

80 100

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 100 kPa, ζ = 0.25, ID0 = 0.67

0

20

40

0 20 40 60
-40

-20

80 100

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 100 kPa, ζ = 0.3, ID0 = 0.60

0

40

80

0 40 80 120
-80

-40

160 200

p0 = 200 kPa, ζ = 0.2, ID0 = 0.54

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

0

40

80

0 40 80 120
-80

-40

160 200

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 200 kPa, ζ = 0.25, ID0 = 0.62

0

40

80

0 40 80 120
-80

-40

160 200

p0 = 200 kPa, ζ = 0.3, ID0 = 0.58

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

0

60

-60

0 60 120 180 240 300

120

-120

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 300 kPa, ζ = 0.2, ID0 = 0.66

0

60

-60

0 60 120 180 240 300

120

-120

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 300 kPa, ζ = 0.25, ID0 = 0.62

0

60

-60

0 60 120 180 240 300

120

-120

p = (σ1' + 2σ3')/3 [kPa]

q
 =

 σ
1
' -

 σ
3
' [

k
P

a
]

p0 = 300 kPa, ζ = 0.3, ID0 = 0.59

Fig. 7: Effective stress paths measured in the twelve undrained cyclic triaxial tests

the parameters given in Table 1. The volumetric strain accumulation rates ε̇acc
v measured in the

drained tests have been multiplied by fc before K was evaluated from Eq. (12).

The bulk modulus K was determined for increments of the pore water pressure of ∆u ≈ 10 kPa
except the tests with p0 = 50 kPa where ∆u ≈ 5 kPa was used. The data of K versus pav is shown
in Figure 8, where pav is the average effective mean pressure in the undrained tests. The cloud of
data in Figure 8 can be approximated by Eq. (5) with A = 440 and n = 0.50 (solid line in Figure
8). No significant influence of the amplitude-pressure-ratio ζ could be found. The relationship
K(p) obtained for the medium coarse sand (Wichtmann et al. [5]) has been added as dashed line
in Figure 8. It demonstrates that the bulk moduli of the fine sand and the medium coarse sand
are of similar magnitude. However, it should be kept in mind that the K-values derived for the
medium coarse sand may be somewhat inaccurate due to the membrane penetration correction.
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Fig. 8: Bulk modulus K = u̇/ε̇acc
v as a function of average mean pressure pav, obtained from twelve pairs

of drained and undrained cyclic triaxial tests

The HCA model with the parameters in Table 1 and with the bulk modulus calculated from Eq.
(5) with A = 440 and n = 0.50 has been used for recalculations of the undrained cyclic tests.
The initial void ratios and the measured strain amplitudes εampl(N) were used as input. The
predicted curves of excess pore water pressure versus number of cycles have been added in the
diagrams on the right-hand side of Figure 3 (thick solid curves). A good agreement between the
HCA model prediction and the experimental data can be noticed.

It can be concluded that the HCA model with a single set of parameters, and with the bulk
modulus determined according to the method described in the paper, describes well both, the
strain accumulation under drained conditions and the accumulation of excess pore water pressure
in the undrained case.

SUMMARY, CONCLUSIONS AND OUTLOOK

The isotropic hypoelastic stiffness tensor E of the high-cycle accumulation model proposed by
Niemunis et al. [1] has been inspected in cyclic triaxial tests on a fine sand. The bulk modulus
K was quantified from twelve pairs of drained and undrained cyclic tests. The assumption of a
constant Poisson’s ratio has been examined in another study (Wichtmann et al. [6]).

The two samples of a test pair were prepared with similar initial void ratios and consolidated
under the same effective isotropic stress. The two samples were loaded with the same deviatoric
stress amplitude, one under drained and the other one under undrained conditions. The bulk
modulus K = u̇/ε̇acc

v was calculated with the rate u̇ of pore water pressure accumulation from
the undrained test and the rate ε̇acc

v of volumetric strain accumulation from the drained test.

Four different initial mean pressures p0 and three different amplitude-pressure-ratios ζ = qampl/p0

were tested. The pressure-dependence of K is well described by Eq. (5) with constants A = 440
and n = 0.50. K seems not to depend on amplitude. The bulk moduli obtained for the fine sand
are of similar magnitude as those measured for a medium coarse sand (Wichtmann et al [5]).

In future, the dependence of bulk modulus K on the void ratio and on the average stress ratio
ηav = qav/pav will be inspected experimentally. Furthermore, it is intended to develop a simplified
determination procedure for K based on oedometric test data.
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