### Torsten Wichtmann Theodor Triantafyllidis

### Über die Korrelation der ödometrischen und der "dynamischen" Steifigkeit nichtbindiger Böden

Der "dynamische" Schubmodul  $G_{dyn}$  des Bodens, die Sekantensteifigkeit der Schubspannungsd.h. Scherdehnungs-Hysterese bei sehr kleinen Dehnungsamplituden, wird häufig mit Hilfe eines Diagramms abgeschätzt, welches den dynamischen Steifemodul  $E_{s,dyn}$  mit dem Steifemodul  $E_s$  bei ödometrischer Kompression (Erstbelastung) korreliert. Die Anwendungsvoraussetzungen und -grenzen dieser Korrelation sind jedoch nicht klar. Im Rahmen dieses Beitrags wird die Korrelation  $E_s \leftrightarrow E_{s,dyn}$  für vier Sande mit unterschiedlichen Korngrößenverteilungskurven überprüft. Zu diesem Zweck wurden Odometerversuche und Messungen der Kompressionswellengeschwindigkeit in einer Triaxialzelle durchgeführt. Zum Teil ergaben sich deutliche Abweichungen der Messwerte vom bisher verwendeten Korrelationsansatz. Auf der Basis der Wellenmessungen und ergänzender Resonant-Column-Versuche diskutiert dieser Beitrag weiterhin die "dynamische" Querdehnzahl  $\nu$  und gibt eine modifizierte Korrelation  $E_s \leftrightarrow G_{dyn}$  an.

# On the correlation of the oedometric and the "dynamic" stiffness of non-cohesive soils.

The "dynamic" shear modulus  $G_{dyn}$  of the soil, i.e. the secant stiffness of the shear stress - shear strain - hysteresis at very small strain amplitudes is often estimated my means of a diagram correlating the dynamic constrained elastic modulus  $E_{s,dyn}$  with the oedometric stiffness  $E_s$  for first loading. However, the assumptions and limits of this correlation are not clear. In the context of this paper the correlation  $E_s \leftrightarrow E_{s,dyn}$  is checked for four sands with different grain size distribution curves. For this purpose tests with oedometric compression and measurements of the compression wave velocity in a triaxial cell were performed. Partially, significant deviations of the measured data from the correlation approach actually used were obtained. On the basis of the wave velocity measurements and supplementing resonant column tests this paper also discusses the "dynamic" Poisson's ratio  $\nu$  and presents a modified correlation  $E_s \leftrightarrow G_{dyn}$ .

#### 1 Einleitung

Im Fall einer zyklisch (quasi-statisch oder dynamisch) belasteten Gründung ist sowohl das Kurz- als auch das Langzeitverhalten zu untersuchen. Das Langzeitverhalten (u.a. Akkumulation von Verformungen) wurde u.a. in [1], [2] thematisiert. Dieser Beitrag widmet sich dem Kurzzeitverhalten, bei dem die Bodeneigenschaften im betrachteten Zeitausschnitt als unveränderlich angenommen werden. Für die Analyse des Kurzzeitverhaltens wird der Boden oft durch Federn und Dämpfer approximiert (z.B. [3], [4], [5]). In die Feder- und Dämpferparameter geht die Schubsteifigkeit G und die Querdehnzahl  $\nu$  des Bodens ein. Da es sich um zyklische Belastungen handelt, ist für G die Sekantensteifigkeit  $G_{sec}$  der Schubspannungs-Scherdehnungshysterese (Bild 1a) einzusetzen.



Fig. 1: a) Definition der Sekantenschubsteifigkeit  $G_{sec}$  der  $\tau$ - $\gamma$ -Hysterese, b) Abnahme von  $G_{sec}$  vom Maximalwert  $G_{dyn}$  mit zunehmender Scherdehnungsamplitude  $\gamma^{ampl}$ Fig. 1: a) Definition of the secant shear stiffness  $G_{sec}$  of the  $\tau$ - $\gamma$ -hysteresis, b) Decrease of  $G_{sec}$  from its maximum value  $G_{dyn}$  with increasing shear strain amplitude  $\gamma^{ampl}$ 

Diese Sekantensteifigkeit  $G_{\text{sec}}$  ist bei nichtbindigen Böden bis zu einer Scherdehnungsamplitude von ca.  $\gamma^{\text{ampl}} = 10^{-5}$  konstant und nimmt für größere Amplituden mit zunehmendem  $\gamma^{\text{ampl}}$  ab (Bild 1b). Der Maximalwert  $G_{dyn}$  bei sehr kleinen Scherdehnungsamplituden wird oft als "dynamischer" Schubmodul bezeichnet. Diese Terminologie ist im Grunde genommen irreführend, da die Sekantensteifigkeit  $G_{sec}$  nicht von der Frequenz abhängt, mit der die Spannungs-Dehnungs-Hysterese durchlaufen wird. In diesem Beitrag soll jedoch die dem Leser vertraute Bezeichnung beibehalten und von einer "dynamischen" Steifigkeit gesprochen werden. Im Fall sehr kleiner Scherdehnungsamplituden  $\gamma^{\text{ampl}} < 10^{-5}$  kann direkt  $G_{\text{dyn}}$  in die Gleichungen für die Feder- bzw. Dämpferparameter eingesetzt werden. Bei größeren Amplituden ist eine Abminderung dieses Maximalwertes mit einem Faktor

 $G_{\rm sec}/G_{\rm dyn}$  vorzunehmen [6], [7].

Der dynamische Schubmodul  $G_{dyn}$  nichtbindiger Böden kann auf verschiedene Weisen mit jeweils unterschiedlich hohem Aufwand bestimmt werden:

- 1. In-situ-Messungen der Scherwellengeschwindigkeit  $v_S = \sqrt{G_{\text{dyn}}/\rho}$ , wobei  $\rho$  die Dichte des Bodens ist.
- 2. Laborversuche (z.B. Resonant-Column-Versuche oder Messungen der Scherwellengeschwindigkeit in einer Triaxialzelle mit Hilfe piezoelektrischer Elemente). Bei im Labor rekonstituierten Proben werden die in-situ-Struktur des Korngerüstes und Alterungseffekte nicht reproduziert, so dass der in-situ-Wert von  $G_{\rm dyn}$  durch die Laborversuche zumeist unterschätzt wird. Ob eine aufwendigere Probenentnahme mittels Gefrierverfahren die Struktur des Korngerüstes bewahrt, ist umstritten.
- 3. Abschätzung von  $G_{\rm dyn}$  mit Hilfe überschlägiger Tabellenwerte (z.B. aus Tabellen in [4]). Die Bandbreite dieser tabellierten Steifigkeiten ist groß. Da keine Aussagen zum Spannungsniveau getroffen werden, ist von einer Verwendung dieser Schätzwerte dringend abzuraten.
- Abschätzung von G<sub>dyn</sub> aus geschlossenen Formeln, z.B. nach Hardin [8], [9]:

$$G_{\rm dyn}[{\rm MPa}] = A \frac{(a-e)^2}{1+e} (p[{\rm kPa}])^n \quad (1)$$

Darin ist e die Porenzahl und p der mittlere Druck. Die Konstanten A, a und n hängen von der Kornform ab. Gleichung (1) liefert für Sande mit einer gleichförmigen Korngrößenverteilungskurve akzeptable Werte [7]. Für ungleichförmige Sande sollte Gleichung (1) nicht angewandt werden, da sie die deren Sekantensteifigkeit um bis zu 100 % überschätzt [10].

5. Verwendung des Diagramms in Bild 2 (nach [11], [4]), welches das Verhältnis  $E_{s,dyn}/E_s$  als Funktion von  $E_s$  zeigt. Dabei ist  $E_{s,dyn}$  der dynamische Steifemodul und  $E_s$  der Steifemodul bei ödometrischer Kompression (Erstbelastung). Mit Hilfe von  $E_s$  kann aus Bild 2 also  $E_{s,dyn}/E_s$  abgelesen werden. Mit einer geschätzten Querdehnzahl  $\nu$  erhält man aus  $E_{s,dyn}$  den dynamischen Schubmodul  $G_{dyn}$ :

$$G_{\rm dyn} = E_{s,\rm dyn} \frac{1 - \nu - 2\nu^2}{2(1 - \nu^2)}$$
 (2)

Diese Methode wird oft angewandt, da für viele insitu Böden Erfahrungswerte für  $E_s$  vorliegen bzw. eine Bestimmung von  $E_s$  im Labor wesentlich einfacher und kostengünstiger erfolgen kann als ein Versuch zur Ermittlung von  $G_{dyn}$ .

Das Diagramm in Bild 2 gibt obere und untere Grenzen für das Verhältnis  $E_{s,dyn}/E_s$  an.



Fig. 2: Verhältnis  $E_{s,dyn}/E_s$  in Abhängigkeit von  $E_s$  nach [11], [4] Fig. 2: Ratio  $E_{s,dyn}/E_s$  in dependence on  $E_s$  after [11], [4]

In [4] bleibt jedoch unklar, für welche Spannungen, Lagerungsdichten, Kornformen und Korngrößenverteilungskurven diese Grenzlinien ermittelt wurden. Eine Verwendung von Bild 2 ist somit stets mit der Gefahr verbunden, dass man sich außerhalb der Gültigkeitsgrenzen des Korrelationsdiagramms befindet.

Ziel dieses Beitrags ist die Überprüfung der letztgenannten Möglichkeit, d.h. der Abschätzung von  $G_{dyn}$  mit Hilfe des Diagramms in Bild 2. Dazu wurden verschiedene Laborversuche an vier Sanden mit unterschiedlichen Korngrößenverteilungskurven durchgeführt:

- Versuche mit ödometrischer Kompression
- Triaxialversuche zur Ermittlung des Peak-Reibungswinkels  $\varphi_P$  (benötigt zur Abschätzung des Seitendruckbeiwertes im Ödometer nach der Jaky-Formel  $K_0 = 1 - \sin \varphi$ )
- Messungen der Kompressionswellengeschwindigkeit  $v_P = \sqrt{E_{s,dyn}/\rho}$  in einer Triaxialzelle mit Hilfe piezoelektrischer Elemente
- Resonant-Column-Versuche zur Ermittlung von  $G_{\rm dyn}$

Die Ergebnisse werden im folgenden dargestellt und hinsichtlich einer Korrelation  $E_{s,dyn} \leftrightarrow E_s$  bzw.  $G_{dyn} \leftrightarrow E_s$  diskutiert.

#### 2 Testmaterial

Die Korngrößenverteilungskurven der vier getesteten Sande sind im Bild 3 dargestellt. Dabei handelt es sich um drei enggestufte Böden im Feinsand- bis Feinkiesbereich sowie einen weitgestuften Sand. Tabelle 1 fasst die mittleren Korndurchmesser  $d_{50}$  und die Ungleichförmigkeitszahlen  $U = d_{60}/d_{10}$  sowie die Porenzahlen  $e_{\text{max}}$  und  $e_{\text{min}}$  bei lockerster und dichtester Lagerung der Testmaterialien zusammen.



Fig. 3: Korngrößenverteilungskurven der vier getesteten Sande

Fig. 3: Grain size distribution curves of the four tested sands

| Sand | $d_{50}$ | U        | $e_{\min}$ | $e_{\rm max}$ |
|------|----------|----------|------------|---------------|
|      | [mm]     | [-]      | [-]        | [-]           |
| 1    | 0,21     | 2,0      | 0,575      | 0,908         |
| 2    | $0,\!55$ | 1,8      | 0,577      | 0,874         |
| 3    | $1,\!45$ | 1,4      | 0,623      | 0,886         |
| 4    | $0,\!52$ | $^{4,5}$ | 0,422      | 0,691         |

Table 1: Mittlerer Korndurchmesser  $d_{50}$ , Ungleichförmigkeit  $U = d_{60}/d_{10}$ , minimale  $(e_{\min})$  und maximale  $(e_{\max})$  Porenzahlen nach DIN 18126 für die vier getesteten Sande Tab. 1: Mean grain diameter  $d_{50}$ , non-uniformity index  $U = d_{60}/d_{10}$ , minimum  $(e_{\min})$  and maximum  $(e_{\max})$  void ratios according to DIN 18126 for the four tested sands

### 3 Triaxialversuche zur Bestimmung des Peak-Reibungswinkels $\varphi_P$

Bei der Auswertung der im Abschnitt 4 diskutierten Ödometerversuche wurde die seitliche Spannung  $\sigma_3$  aus der vertikalen Spannung  $\sigma_1$  entsprechend  $\sigma_3 = K_0 \sigma_1$ berechnet. Der Seitendruckbeiwert wurde nach Jaky zu  $K_0 = 1 - \sin \varphi_P$  angesetzt.

Der von der Lagerungsdichte  $I_D$  bzw. der Porenzahl e abhängige Peak-Reibungswinkel  $\varphi_P$  wurde in Versuchen mit triaxialer Kompression bestimmt. Für jeden der vier Sande wurden Versuchsreihen mit unterschiedlichen Anfangslagerungsdichten  $I_{D0}$  durchgeführt. Innerhalb jeder Versuchsreihe wurden die Seitenspannungen  $\sigma_3 = 50$ , 100 und 200 kPa getestet. Bild 4 zeigt die gemessenen Peak-Spannungszustände in der pq-Ebene, wobei  $p = (\sigma_1 + 2\sigma_3)/3$  der mittlere Druck und  $q = \sigma_1 - \sigma_3$  die Deviatorspannung ist. Die Neigung der Geraden durch den Ursprung und diese Peak-Spannungszustände beträgt  $M_c(\varphi_P) = 6 \sin \varphi_P / (3 - 6 \sin \varphi_P) / (3 - 6 \sin \varphi_P)$  $\sin \varphi_P$ ), woraus  $\varphi_P$  berechnet werden kann. In Bild 5 ist  $\varphi_P$  für die vier Sande als Funktion der im Hochpunkt der q- $\varepsilon_1$ -Kurve gemessenen Porenzahl ("Peak-Porenzahl")  $e_P$  dargestellt. Unter der Annahme, dass für  $e = e_{\max}$  näherungsweise  $\varphi_P \approx \varphi_c$  mit dem kritischen Reibungswinkel  $\varphi_c$  gilt, wurde die Funktion

$$\varphi_P = \varphi_c \exp\left(a_{\varphi} \left(e_{\max} - e_P\right)^{b_{\varphi}}\right) \tag{3}$$

an die Messdaten angepasst. Die Konstanten  $a_{\varphi}$  und  $b_{\varphi}$  wurden in Tabelle 2 zusammengestellt. Die angegebenen kritischen Reibungswinkel  $\varphi_c$  wurden als Mittelwerte aus mehreren Schüttkegelversuchen bestimmt.



Fig. 4: Peak-Spannungszustände in der p-q-Ebene für die vier getesteten Sande und unterschiedliche Anfangslagerungsdichten  $I_{D0}$ 

Fig. 4: Peak stress states in the p-q-plane for the four tested sands and different initial densities  $I_{D0}$ 



Fig. 5: Peak-Reibungswinkel  $\varphi_P$  in Abhängigkeit der Porenzahl im Peak  $e_P$  für die vier getesteten Sande, Anpassung der Gleichung (3)

Fig. 5: Peak friction angle  $\varphi_P$  in dependence on peak void ratio  $e_P$  for the four tested sands, fitting of Eq. (3)

| Sand | $\varphi_c$ | $a_{\varphi}$ | $b_{\varphi}$ |  |
|------|-------------|---------------|---------------|--|
|      | [°]         | [-]           | [-]           |  |
| 1    | 32,8        | $78,\!9$      | 4,6           |  |
| 2    | 31,2        | $^{3,0}$      | 1,7           |  |
| 3    | $33,\!9$    | 16,1          | $^{3,2}$      |  |
| 4    | $33,\!3$    | 648           | $^{5,4}$      |  |

Table 2: Kritischer Reibungswinkel  $\varphi_c$ , Konstanten  $a_{\varphi}$  und  $b_{\varphi}$  in Geichung (3)

Tab. 2: Critical friction angle  $\varphi_c$ , constants  $a_{\varphi}$  and  $b_{\varphi}$  in Eq. (3)

# 4 Steifemodul $E_s$ bei ödometrischer Kompression

Für die Odometerversuche wurde aufgrund der besseren Reproduzierbarkeit der Ergebnisse für nichtbindige Böden anstelle des Standard-Ödometers (Probendurchmesser d = 7 cm, Probenhöhe h = 2 cm) ein größerer Ödometertopf (d = 28 cm, h = 8 cm) verwendet (Bild 6). Das Verhältnis d/h = 3,5 entspricht dem des Standard-Ödometers. Es handelt sich um ein Versuchsgerät mit feststehendem Ring. Versuche mit Sand 1 zeigten, dass beide Odometer gleiche Ergebnisse liefern. Deren Streuung ist beim größeren Odometertopf und insbesondere bei grobkörnigen Sanden jedoch wesentlich geringer. Die axiale Spannung  $\sigma_1$  wurde über ein pneumatisches Belastungssystem und einen vertikal kugellagergeführten Laststempel auf die Probe aufgegeben. Mit Hilfe eines Wegaufnehmers wurde die axiale Stauchung  $\Delta h$  der Probe ermittelt. Die seitliche Spannung wurde nicht gemessen. Zu ihrer Abschätzung siehe Abschnitt 3.



Fig. 6: Versuchsgerät für die ödometrische Kompression (d = 28,0 cm, h = 8 cm) Fig. 6: Test device for oedometric compression (d = 28.0 cm,

h = 8 cm

Für jeden Sand wurden Versuche mit unterschiedlichen Anfangslagerungsdichten  $I_{D0}$  durchgeführt. Die axiale Spannung wurde jeweils in 15 Laststufen bis auf  $\sigma_1 = 800$  kPa erhöht. Die Reduktion der Porenzahl e mit dem mittleren Druck  $p = (\sigma_1 + 2\sigma_3)/3$  zeigt das Bild 7 exemplarisch für anfangs lockere und dichte Proben.



Fig. 7: Reduktion der Porenzahl e mit dem mittleren Druck p in Ödometerversuchen an Sand 2
Fig. 7: Reduction of void ratio e with mean pressure p in oedometric tests on sand 2

Für eine bestimmte Laststufe wird der Steifemodul  $E_s$  als Sekantenmodul aus dem Inkrement der axialen Spannung  $\Delta \sigma_1$ , der Porenzahländerung  $\Delta e$  innerhalb der Laststufe und der Porenzahl  $e_0$  am Anfang der Laststufe berechnet [12]:

$$E_s = \frac{\Delta \sigma_1}{\Delta e} (1 + e_0) \tag{4}$$

Dies entspricht  $E_s = \Delta \sigma_1 / \Delta \varepsilon_1$ , wenn bei der Berechnung des Inkrements der axialen Dehnung  $\Delta \varepsilon_1$  die Höhenänderung  $\Delta h$  innerhalb der Laststufe auf die Anfangshöhe der Laststufe  $h_0$  bezogen wird.

Das Bild 8 zeigt den Steifemodul  $E_s$  als Funktion der Porenzahl e für sieben Druckstufen 50 kPa  $\leq p \leq$  400 kPa (Datenpunkte aus Interpolation zwischen den nächstgelegenen Messwerten von p). An die Messdaten wurde die Funktion

$$E_s = A \frac{(a-e)^2}{1+e}$$
 (5)

mit den Konstanten A (in der Einheit [MPa]) und a angepasst. Eine einheitliche Beschreibung des porenzahl- und druckabhängigen Steifemoduls durch eine Gleichung analog zu Gleichung (1) war nicht möglich, so dass Gleichung (5) separat an jede Druckstufe angepasst wurde. Die sich aus der Anpassung ergebenden Konstanten A und a sind in der Tabelle 3 zusammengestellt.

Bild 9 vergleicht die Steifemoduli  $E_s$  für die vier getesteten Sande und die Druckstufe p = 200 kPa. Bei

| p   | San       | d 1      | San        | d 2      | San        | d 3      | San        | d 4      |
|-----|-----------|----------|------------|----------|------------|----------|------------|----------|
|     | A         | a        | Α          | a        | A          | a        | A          | a        |
| 50  | $53,\!5$  | $1,\!58$ | $125,\!3$  | $1,\!28$ | 42,4       | 1,77     | 263,3      | 0,82     |
| 75  | $60,\!6$  | $1,\!66$ | $176,\! 6$ | $1,\!26$ | $73,\!9$   | $1,\!62$ | 317,5      | $0,\!84$ |
| 100 | 106,3     | $1,\!51$ | 270,9      | $1,\!22$ | 103,2      | $1,\!54$ | 366,7      | $0,\!84$ |
| 150 | $235,\!9$ | $1,\!34$ | $342,\! 6$ | $1,\!24$ | $128,\!0$  | $1,\!53$ | $463,\!6$  | 0,85     |
| 200 | $305,\!6$ | $1,\!31$ | $478,\!8$  | $1,\!21$ | $159,\!6$  | $1,\!50$ | 604,1      | 0,83     |
| 300 | 382,7     | $1,\!30$ | 382,9      | $1,\!34$ | 198,1      | $1,\!47$ | 597,0      | 0,86     |
| 400 | $400,\!6$ | $1,\!31$ | $337,\!9$  | 1,41     | $190,\! 6$ | $1,\!51$ | $542,\! 6$ | 0,91     |

Table 3: Konstanten A in [MPa] und a in Gleichung (5) für die vier getesteten Sande Tab. 3: Constants A in [MPa] and a in Eq. (5) for the four tested sands



Fig. 8: Ödometrischer Steifemodul  $E_s$  als Funktion der Porenzahl e für unterschiedliche mittlere Drücke pFig. 8: Oedometric stiffness  $E_s$  as a function of void ratio e for different mean pressures p

gleicher Porenzahl weisen die enggestuften Sande 1 bis 3 wesentlich größere Steifemoduli als der weitgestufte Sand 4 auf. Im Fall der enggestuften Sande wurden bei den kleineren Porenzahlen Steifemoduli gemessen, die mit steigendem mittleren Korndurchmesser  $d_{50}$  abnehmen.

#### 5 Dynamischer Steifemodul $E_{s,dyn}$

Der dynamische Steifemodul  $E_{s,dyn}$  wurde aus Messungen der Kompressionswellengeschwindigkeit  $v_P = \sqrt{E_{s,dyn}/\rho}$  in einer Triaxialzelle ermittelt (Bild 10). Das Versuchsgerät und die Messtechnik wurden ausführlich in [7] vorgestellt. Analog zu den Ödometerversuchen wurden für jeden Sand Versuche mit unterschiedlichen Anfangslagerungsdichten durchgeführt. Die isotrope Spannung ( $p = \sigma_1 = \sigma_3$ ) wurde in sieben Druckstufen gesteigert (p = 50, 75, 100, 150, 200, 300 und 400 kPa). Zwischen den Messungen von  $v_P$  in den einzelnen Druckstufen lag eine 15-minütige Wartezeit. Die Verformungen der trockenen Proben wurden mit einem Wegaufnehmer (axiale Richtung) und mit berührungslosen Wegsensoren (seitliche Richtung) gemessen. Das Bild 11 zeigt den dynamischen Steifemodul  $E_{s,dyn}$  als Funktion des Druckes und der Porenzahl.

Das Bild 12 vergleicht die gemessenen Steifemoduli  $E_{s,dyn}(e)$  der vier Sande für die Druckstufe p= 200 kPa. Im Hinblick auf die im Abschnitt 7 noch erläuterte wesentlich geringere dynamische Schub-



Fig. 11: Dynamischer Steifemodul  $E_{s,dyn}$  als Funktion der Porenzahl e für unterschiedliche mittlere Drücke p Fig. 11: Dynamic stiffness  $E_{s,dyn}$  as a function of void ratio e for different mean pressures p



Fig. 9: Ödometrischer Steifemodul  $E_s(e)$  für die vier getesteten Sande bei p = 200 kPa

Fig. 9: Oedometric stiffness  $E_s(e)$  for the four tested sands at p = 200 kPa

steifigkeit  $G_{dyn}$  des ungleichförmigen Bodens im Vergleich zu den gleichförmigen Böden bei e = konstant überrascht es, dass im Bild 12 kaum eine Abhängigkeit der P-Wellengeschwindigkeit bzw. des daraus ermittelten Steifemoduls  $E_{s,dyn}$  von der Korngrößenverteilungskurve festzustellen ist. Für eine bestimmte Porenzahl e sind lediglich die Werte  $E_{s,dyn}$  des Grobsandes 3 etwas größer als diejenigen der anderen



Fig. 10: Triaxialgerät mit piezoelektrischen Elementen zur Messung von P- und S-Wellengeschwindigkeiten Fig. 10: Triaxial device with piezoelectric elements for the measurement of P and S wave velocities

drei Sande.

Die Beschreibung von  $E_{s,dyn}(e,p)$  erfolgt in Anlehnung an Gleichung (1) durch

$$E_{s,\text{dyn}} = A_E \frac{(a_E - e)^2}{1 + e} p_{\text{atm}}^{1 - n_E} p^{n_E}.$$
 (6)

Darin ist  $p_{\text{atm}} = 100 \text{ kPa}$  der atmosphärische Druck. Die Konstanten  $A_E$ ,  $a_E$  und  $n_E$  sind in Tabelle 4 zusammengestellt. Die durchgezogenen Kurven in Bild 11 entsprechen der Gleichung (6) mit den Konstanten der



Fig. 12: Dynamischer Steifemodul  $E_{s,dyn}(e)$  für die vier getesteten Sande bei p = 200 kPa

Fig. 12: Dynamic stiffness  $E_{s,dyn}(e)$  for the four tested sands at p = 200 kPa

| Sand | $A_E$ | $a_E$    | $n_E$    |
|------|-------|----------|----------|
|      | [-]   | [-]      | [-]      |
| 1    | 585   | $3,\!52$ | $0,\!43$ |
| 2    | 1820  | $2,\!36$ | 0,40     |
| 3    | 1914  | $2,\!46$ | $0,\!38$ |
| 4    | 3074  | 1,91     | 0,43     |

Table 4: Konstanten  $A_E$ ,  $a_E$  und  $n_E$  der Gleichung (6) für die vier getesteten Sande

Tab. 4: Constants  $A_E$ ,  $a_E$  and  $n_E$  of Eq. (6) for the four tested sands

Tabelle 4.

## 6 Korrelation des ödometrischen Steifemoduls $E_s$ mit dem dynamischen Steifemodul $E_{s,dyn}$

Mit den Ergebnissen der Ödometerversuche (Abschnitt 4, Gleichung (5)) und der P-Wellenmessungen (Abschnitt 5, Gleichung (6)) wurden die Diagramme in Bild 13 erstellt. Sie zeigen für die vier Sande das Verhältnis  $E_{s,dyn}/E_s$  als Funktion von  $E_s$ . Ein Wertepaar  $E_s, E_{s,dyn}$  wurde für den gleichen mittleren Druck p ermittelt. Dabei ist zu bedenken, dass der Spannungszustand im Odometer anisotrop ( $\sigma_1 > \sigma_3$ ) und bei der P-Wellenmessung isotrop  $(\sigma_1 = \sigma_3)$  ist. Ein Vergleich der Steifigkeiten  $E_s$  und  $E_{s,dyn}$  für p = konstant ist dennoch gerechtfertigt, da sich eine Spannungsanisotropie erst bei Spannungsverhältnissen  $\sigma_1/\sigma_3$  nahe dem Bruchzustand in einer Veränderung der dynamischen Steifigkeit bemerkbar macht [13]. Die Auswertung der Beziehung  $E_{s,dyn}/E_s \leftrightarrow E_s$  erfolgte für eine im Bild 13 angegebene Bandbreite der Porenzahlen im Abstand  $\Delta e = 0,01$  (= Abstand zweier Datenpunkte).

Die Kurven für unterschiedliche Druckniveaus p werden im Bild 13 mit dem grau hinterlegten Bereich aus Bild 2 verglichen. Für den Fein- und Mittelsand 1 liegen die gemessenen Verhältnisse  $E_{s,dyn}/E_s$  insbeson-

dere für größere Drücke und kleinere Porenzahlen, d.h. größere Werte von  $E_s$ , innerhalb der in Bild 2 angegebenen Bandbreite. Mit zunehmendem mittleren Korndurchmesser  $d_{50}$  wurde bei den enggestuften Sanden 1 bis 3 für einen bestimmten Wert von  $E_s$  eine Zunahme des Verhältnisses  $E_{s,dyn}/E_s$  gemessen. So liegen die Verhältnisse  $E_{s,dyn}/E_s$  im Fall des Mittel- und Grobsandes 2 zum größten Teil leicht unterhalb der oberen Grenze des in Bild 2 grau hinterlegten Bereiches. Im Fall des Grobsandes 3 liegen die gemessenen Verhältniswerte  $E_{s \, dyn}/E_s$  bereits oberhalb des in [4] empfohlenen Ablesebereiches. Beim ungleichförmigen Sand 4 unterschätzt die in Bild 2 angegebene Bandbreite das tatsächliche Verhältnis  $E_{s,dyn}/E_s$  deutlich (Faktor 1,5 bis 3). Aus Bild 13 kann demnach geschlossen werden, dass das Diagramm in Bild 2 nur für enggestufte Fein- bis Mittelsande angewandt werden sollte.

## 7 Dynamischer Schubmodul $G_{dyn}$ und Querdehnzahl $\nu$

Aus den Bildern 2 bzw. 13 erhält man für einen bestimmten ödometrischen Steifemodul  $E_s$  den dynamischen Steifemodul  $E_{s,dyn}$ . Zumeist benötigt man jedoch den dynamischen Schubmodul  $G_{dyn}$ , der aus Gleichung (2) unter Annahme einer Querdehnzahl  $\nu$  berechnet wird. In [4] wird für Sand und Kies  $0, 25 < \nu < 0, 35$ empfohlen. Die P-Wellenmessungen in der Triaxialzelle wurden um Resonant-Column-(RC)-Versuche zur Bestimmung des dynamischen Schubmoduls  $G_{dyn}$  ergänzt (S-Wellenmessungen in der Triaxialzelle wurden leider nicht vorgenommen, RC-Versuche liefern jedoch nahezu identische Werte [7]). Das Versuchsgerät ist in Bild 14 dargestellt und wurde in [7] ausführlich beschrieben. Die annähernd isotrope Spannung (eine leichte Anisotropie resultiert aus dem Gewicht des Erregerkopfes [7]) wurde analog zu den P-Wellenmessungen in der Triaxialzelle in sieben Druckstufen gesteigert (p = 50, 75, 100, 150, 200,300 und 400 kPa). Bei jedem Druck wurde  $G_{dyn}$  nach einer 15-minütigen Wartezeit gemessen. Verformungen der Probe infolge der Druckerhöhung wurden lokal mit berührungslosen Wegaufnehmern ermittelt.



Fig. 14: Schema des Resonant-Column-Gerät Fig. 14: Scheme of the resonant column device

Das Bild 15 stellt den dynamischen Schubmodul für



Fig. 13: Faktor  $E_{s,dyn}/E_s$  als Funktion von  $E_s$  (grau hinterlegter Bereich entspricht der in Bild 2 angegebenen Bandbreite) Fig. 13: Factor  $E_{s,dyn}/E_s$  as a function of  $E_s$  (shadowed area coincides with the band width given in Fig. 2)

die vier Sande als Funktion des mittleren Druckes pund der Porenzahl e dar. In Bild 16 sind die Kurven  $G_{\rm dyn}(e)$  der vier Sande für die Druckstufe p = 200 kPa gegenübergestellt. In Übereinstimmung mit früheren Versuchsergebnissen [10] sind die Schubsteifigkeiten für die enggestuften Sande bei einer gleichen Porenzahl nahezu unabhängig von  $d_{50}$  (etwas größere Steifigkeiten wurden für den gröbsten Sand 3 gemessen). Der ungleichförmige Sand weist bei e = konstant wesentlich geringere Werte von  $G_{\rm dyn}$  auf als die enggestuften Sande.

Die Abhängigkeit  $G_{dyn}(e, p)$  kann durch die dimensionsreine Variante der Gleichung (1)

$$G_{\rm dyn} = A_G \frac{(a_G - e)^2}{1 + e} p_{\rm atm}^{1 - n_G} p^{n_G}$$
 (7)

beschrieben werden. Die aus einer Kurvenanpassung erhaltenen Materialkonstanten  $A_G$ ,  $a_G$  und  $n_G$  sind in Tabelle 5 zusammengestellt. Die gute Approximation der Messdaten durch die Gleichung (7) und die Konstanten der Tabelle 5 zeigen die durchgezogenen Linien im Bild 15.

Die Querdehnzahl  $\nu$  erhält man bei bekannten Ausbreitungsgeschwindigkeiten der Kompressions-  $(v_P)$  und der Scherwelle  $(v_S)$  aus

$$\nu = \frac{2 - (v_P/v_S)^2}{2 - 2(v_P/v_S)^2} \qquad \text{bzw.}$$
(8)



Fig. 16: Dynamischer Schubmodul  $G_{dyn}(e)$  für die vier getesteten Sande bei p = 200 kPa Fig. 16: Dynamic shear modulus  $G_{dyn}(e)$  for the four tested

Fig. 16: Dynamic shear modulus  $G_{dyn}(e)$  for the four tested sands at p = 200 kPa

$$\nu = \frac{\alpha}{4(1-\alpha)} + \sqrt{\left(\frac{\alpha}{4(1-\alpha)}\right)^2 - \frac{\alpha-2}{2(1-\alpha)}} \quad (9)$$

mit  $\alpha = E_{s,dyn}/G_{dyn}$ . Gleichung (9) wurde mit den Gleichungen (6) und (7) sowie den Konstanten der Tabellen 4 und 5 für die vier Sande ausgewertet. Die daraus erhaltenen Querdehnzahlen  $\nu$  sind im Bild 17 in Abhängigkeit der Porenzahl e und des mittleren Druckes p dargestellt.



Fig. 15: Dynamischer Schubmodul  $G_{dyn}$  als Funktion der Porenzahl e und des mittleren Druckes p für die vier getesteten Sande

Fig. 15: Dynamic shear modulus  $G_{dyn}$  as a function of void ratio e and mean pressure p for the four tested sands

| Sand | $A_G$ | $a_G$    | $n_G$    |
|------|-------|----------|----------|
| 1    | 1196  | 1.84     | 0.45     |
| 2    | 2513  | 1,46     | 0,43     |
| 3    | 1288  | 1,90     | 0,42     |
| 4    | 1409  | $1,\!47$ | $0,\!53$ |

Table 5: Konstanten  $A_G$ ,  $a_G$  und  $n_G$  der Gleichung (7) für die vier getesteten Sande

Constants  $A_G$ ,  $a_G$  and  $n_G$  of Equation (7) for the four tested sands

Für alle vier getesteten Sande steigt  $\nu$  mit der Porenzahl e. Mit zunehmendem mittleren Korndurchmesser  $d_{50}$  und mit zunehmender Ungleichförmigkeitszahl Uist diese Zunahme weniger stark ausgeprägt. Die leichte Spannungsabhängigkeit resultiert aus den etwas unterschiedlichen Werten der Konstanten  $n_E$  und  $n_G$ in den Gleichungen (6) und (7). Für die enggestuften Sande 1 bis 3 liegen die Querdehnzahlen im Bereich  $0, 18 \leq \nu \leq 0, 37$ . Für den weitgestuften Sand 4 wurden größere Werte  $0, 34 \leq \nu \leq 0, 43$  ermittelt.

Der Fehler, der sich (zusätzlich zu der aus Bild 2 resultierenden Ungenauigkeit) aus einer falschen Abschätzung der Querdehnzahl ergibt, kann beträchtlich sein. So erhält man für  $\nu = 0, 2$  die Beziehung  $G_{dyn} =$   $0,375 E_{s,dyn}$  und für  $\nu = 0,4$  gilt  $G_{dyn} = 0,167 E_{s,dyn}$ . Die Diagramme in Bild 17 können zu einer genaueren Abschätzung der Querdehnzahl herangezogen werden.

### 8 Korrelation von $E_s$ mit $G_{dyn}$

Die Bestimmung von  $G_{\rm dyn}$  aus  $E_s$  lässt sich abkürzen, indem man beide Größen direkt miteinander korreliert. Solche Diagramme, die das Verhältnis  $G_{\rm dyn}/E_s$  als Funktion von  $E_s$  zeigen, enthält das Bild 18. Die dort angegebenen Bandbreiten für die untersuchten Drücke und Porenzahlen sollten in jedem Fall genauere Werte für  $G_{\rm dyn}$  liefern als das Diagramm in Bild 2 in Kombination mit der Annahme einer Querdehnzahl.

Natürlich hängt eine Abschätzung von  $G_{dyn}$  aus  $E_s$  in entscheidender Weise von der Qualität des Eingangswertes  $E_s$  ab. Verwendet man hierfür grobe Erfahrungswerte, wird auch eine verbesserte Korrelation  $E_s \leftrightarrow G_{dyn}$ , wie sie Bild 18 enthält, wenig nützen. Eingangswerte für die Korrelationsdiagramme sollten daher die Ergebnisse qualitativ hochwertiger Ödometerversuche sein.

Am Lehrstuhl für Grundbau und Bodenmechanik der RUB läuft zur Zeit eine umfangreiche Untersuchung zum Einfluss der Korngrößenverteilungskurve nichtbindiger Böden auf die dynamische Schubsteifigkeit  $G_{dyn}$ . Hierfür werden Versuchsreihen im Resonant-Column-Gerät durchgeführt. Ziel ist es u.a., die Kon-



Fig. 17: Querdehnzahl  $\nu$  als Funktion der Porenzahl e und des mittleren Druckes p für die vier getesteten Sande Fig. 17: Poisson's ratio  $\nu$  as a function of void ratio e and mean pressure p for the four tested sands



Fig. 18: Korrelation des dynamischen Schubmoduls  $G_{dyn}$  mit dem ödometrischen Steifemodul  $E_s$ Fig. 18: Correlation of the dynamic shear modulus  $G_{dyn}$  with the oedometric stiffness  $E_s$ 

stanten der Gleichung (7) mit der Granulometrie (insbesondere mit der Ungleichförmigkeitszahl U) zu korrelieren. Solch ein empirischer Ansatz mit geschlossenen Gleichungen wird bessere Abschätzungen des dynamischen Schubmoduls  $G_{dyn}$  ermöglichen als Korrelationsdiagramme  $E_s \leftrightarrow E_{s,dyn}$  bzw.  $E_s \leftrightarrow G_{dyn}$ .

#### 9 Zusammenfassung

Dieser Aufsatz diskutiert eine häufig verwendete Korrelation des ödometrischen Steifemoduls  $E_s$  mit dem dynamischen Steifemodul  $E_{s,dyn}$  bzw. mit dem dynamischen Schubmodul  $G_{\rm dyn}$ . Dazu wurden Ödometerversuche, P-Wellenmessungen in einer Triaxialzelle sowie Resonant-Column-Versuche an vier Sanden unterschiedlichen Korngrößenverteilungskurven mit Die Auswertung dieser Versuche durchgeführt. zeigt, dass die bisher verwendete Korrelation nur für enggestufte Fein- bis Mittelsande angewandt werden sollte. Für gröbere enggestufte Sande und Kiese sowie weitgestufte Böden wird das Verhältnis  $E_{s,dyn}/E_s$  zum Teil signifikant unterschätzt. Weitere Fehler können aus der Abschätzung der Querdehnzahl resultieren, die für die Umrechnung von  $E_{s,dyn}$  in  $G_{dyn}$  benötigt wird. Dieser Beitrag gibt Anhaltswerte von  $\nu$  für die unterschiedlichen Sande an. Außerdem wurde eine auf den Messdaten basierende Korrelation von  $G_{dyn}$ mit  $E_s$  entwickelt. Sie liefert realistischere Werte für  $G_{\rm dyn}$  als die bisher verwendete Korrelation in Bild 2, ist aber ebenso wie diese auf qualitativ hochwertige Eingangswerte von  $E_s$  angewiesen.

#### References

- T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Setzungsakkumulation in nichtbindigen Böden unter hochzyklischer Belastung. *Bautechnik*, 82(1):18–27, 2005.
- [2] T. Wichtmann, A. Niemunis, and T. Triantafyllidis. FE-Prognose der Setzung von Flachgründungen auf Sand unter zyklischer Belastung. *Bautechnik*, 82(12):902–911, 2005.
- [3] F.E.Jr. Richart, J.R.Jr. Hall, and R.D. Woods. Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs, New Jersey, 1970.
- [4] Empfehlungen des Arbeitskreises 1.4 "Baugrunddynamik" der Deutschen Gesellschaft für Geotechnik e.V. (DGGT), 2001.
- [5] G. Gazetas. Foundation Engineering Handbook, 2nd Edition, chapter 15: Foundation vibrations, pages 553-593. 1991.
- [6] B.O. Hardin and V.P. Drnevich. Shear modulus and damping in soils: design equations and curves. *Journal of the Soil Mechanics and Foundations Di*vision, ASCE, 98(SM7):667–692, 1972.

- [7] T. Wichtmann and T. Triantafyllidis. Dynamische Steifigkeit und Dämpfung von Sand bei kleinen Dehnungen. *Bautechnik*, 82(4):236–246, 2005.
- [8] B.O. Hardin and F.E. Richart Jr. Elastic wave velocities in granular soils. *Journal of the Soil Mechanics and Foundations Division*, ASCE, 89(SM1):33-65, 1963.
- [9] B.O. Hardin and W.L. Black. Sand stiffness under various triaxial stresses. *Journal of the Soil Mechanics and Foundations Division*, ASCE, 92(SM2):27–42, 1966.
- [10] T. Wichtmann and T. Triantafyllidis. Über den Einfluss der Kornverteilungskurve auf das dynamische und das kumulative Verhalten nichtbindiger Böden. *Bautechnik*, 82(6):378–386, 2005.
- [11] I. Alpan. The Geotechnical Properties of Soils. Earth Science Reviews, Elsevier, (6):5–49, 1970.
- [12] E DIN 18135:1999-06 "Baugrund Untersuchung von Bodenproben - Eindimensionaler Kompressionsversuch", 1999.
- [13] P. Yu and F.E. Richart Jr. Stress ratio effects on shear modulus of dry sands. *Journal of Geotechni*cal Engineering, ASCE, 110(3):331–345, 1984.

#### Autoren dieses Beitrages:

Dr.-Ing. Torsten Wichtmann, Univ.-Prof. Dr.-Ing. habil. Theodor Triantafyllidis, Ruhr-Universität Bochum, Lehrstuhl für Grundbau und Bodenmechanik, Universitätsstraße 150, 44780 Bochum