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Abstract

This paper presents the results of the first phase of a research project dealing with the constitutive descrip-
tion of the behaviour of well-graded granular materials when used for base or subbase layers in flexible pavement
structures (so-called ”unbound granular materials”, UGMs). Monotonic and cyclic loading is under consideration.
The present paper concentrates on test results and the constitutive description of monotonic loading. Hypoplasticity
in the version proposed by von Wolffersdorff is used as the constitutive model. Sets of material constants for typical
UGM materials do not exist in the literature. The experimental determination of a set of constants according to
the procedure proposed by Herle is described in this paper. In the monotonic triaxial tests specimens with a square
cross-section were used. The paper presents a preliminary test series comparing triaxial results obtained with
cylindrical and with prismatic specimens. Re-calculations of the element tests are also presented. The simulations
show a good congruence with the experiments.
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1 Introduction

A pavement must be designed in such way that the
cyclic loads imposed by the vehicles do not generate
excessive permanent settlements (e.g. rutting). A flex-
ible pavement usually consists of:

• a thin or low stiffness asphalt layer,

• the base and subbase layers (well-graded, so-called
”unbound granular material”, UGM) and

• the subgrade.

Many design procedures [2, 4, 9, 13, 19, 21, 25, 36, 37] as-
sume that permanent deformations occur only in the
subgrade. However, in flexible pavement structures all
layers contribute to settlements, although the percent-
age of the single layers may be different. One could
think that since the UGM of the base and subbase lay-
ers is compacted to a high density (usually > 95 % of
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Proctor density) during construction, the permanent
deformations in these layers are small. However, due
to the large stress amplitudes their contribution to the
overall rutting cannot be neglected and should be con-
sidered in design criterions.

In most design procedures the UGM is modelled
as a linear or non-linear elastic material. Thus, only
the short-time performance, i.e. the amplitudes of de-
formation due to given load amplitudes (representing
certain classes of vehicles), are considered. Therefore,
many studies deal with the determination of the elastic
constants of UGMs (resilient behaviour). In compar-
ison to the resilient behaviour, the long-time perfor-
mance, i.e. the permanent (residual, plastic) deforma-
tions in UGMs due to cyclic loading were studied less
intensively (see e.g. [1,5,12,26,29,40,43,44]) and most
of these studies use unrealistic stress paths (i.e. triax-
ial tests with a constant confining pressure were per-
formed). Some equations for the prediction of perma-
nent deformations in UGM layers of flexible pavements
can be found in [1, 26, 38]. A respective literature re-
view will be given in a future paper together with the
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results of our cyclic laboratory tests.

Since millions of load cycles have to be considered
special calculation strategies for the permanent de-
formations are indispensable [32]. The group of Los
Andes University intends to extend the Wolffersdorff
hypoplastic model [41] (Section 2.1) by a variable N
(number of cycles) to predict the permanent deforma-
tions of UGMs for a given bunch of N cycles of a con-
stant amplitude. The stiffness tensor L will be modified
to change with N . This modification will be explained
in detail in a future paper. Analytical equations for
the settlement s(N, . . .) in the UGM will be developed
based on this modified hypoplastic model.

The group of University of Karlsruhe will prove the
applicability of their accumulation model [35, 45] for
non-cohesive soils to pre-compacted UGMs. A verti-
cally pre-compacted UGM sample is likely to behave
differently under cyclic loading in comparison to a sand
sample prepared by pluviation. Using the finite element
(FE) method for a prediction of residual settlements
only few cycles are calculated implicitly with many
strain increments (using the Wolffersdorff hypoplastic
model extended by the ”intergranular strain”, Niemu-
nis & Herle [34]) and the permanent deformations due
to larger packages of cycles between are predicted di-
rectly (explicitly) by the accumulation model.

Irrespective of the intended calculation strategy both
groups need the material constants of the Wolffersdorff
hypoplastic model for a typical UGM. For this pur-
pose a well-graded grain size distribution curve (mean
grain size d50 = 6.3 mm, coefficient of uniformity
Cu = d60/d10 = 100) was mixed (Section 4).

A set of hypoplastic constants for such a high value
of Cu is not known to the authors. Based on tests on
sands and gravels with 0.16 mm ≤ d50 ≤ 2.0 mm and
1.4 ≤ Cu ≤ 7.2, Herle [16] and Herle & Gudehus [18]
developed correlations of the hypoplastic constants hs

and n with d50 and Cu:

hs[MPa] = 542.5 · 102.525(d50/d0)/
√

Cu and (1)

n = 0.366− 0.0341 Cu/(d50/d0)
0.33 (2)

with the reference grain size d0 = 1 mm. The d50- and
Cu-values of the material used for the present study
lie outside the range of applicability of Eqs. (1) and
(2). An extrapolation to UGM materials seems not
possible since for the present material, Eq. (2) delivers
a negative n-value (n = -1.49, hs = 21 MPa).

In Section 5 it is reported on laboratory tests which
were performed in order to derive the hypoplastic con-
stants according to the procedure proposed by Herle
[16] (Section 2.2). The constants of the ”intergranular
strain” are not discussed in the present paper.

In the monotonic triaxial tests for the determination
of the constant α specimens with a square cross section
were used. Section 3 explains the reasons and presents
a preliminary series of monotonic triaxial tests in which
different specimen geometries (circular and square cross
section, different heights) were compared. It is demon-
strated, that cylindrical and prismatic specimens de-
liver similar test results.

Finally, Section 6 presents re-calculations of the lab-
oratory tests with an element test program.

2 Hypoplasticity

Hypoplastic constitutive models (e.g. Kolymbas [23])
were developed as an alternative to elasto-plastic mod-
els. They describe the mechanical behaviour of ”sim-
ple grain skeletons” (Herle [16]) phenomenologically.
Hypoplastic models are incrementally non-linear, rate-
independent, path-dependent and dissipative. In con-
trast to elasto-plasticity a splitting of the strain rate
in an elastic and a plastic portion is not necessary.
Furthermore, there is no need to define a yield sur-
face explicitly because it follows from the constitutive
equations. The relatively simple implementation of hy-
poplastic models may be seen as another advantage.

2.1 Hypoplastic model proposed by von
Wolffersdorff [41]

In the following, the symbol · denotes multiplication
with one dummy index (single contraction), e.g. A ·
B = AikBkj . A multiplication with two dummy indices
(double contraction) is denoted with a colon, e.g. A :
B = AijBij . Dyadic multiplication is written without
⊗, i.e. AB = AijBkl. t∗ is the deviatoric part of t
and ‖ t ‖ denotes Euclidian normalization.

The general form of the hypoplastic model may be
written as:

T̊ = L : D + fd N ‖D‖ (3)

Therein T̊ is the objective Jaumann stress rate and D is
the strain rate. L and N are the fourth-order linear and
the second-order nonlinear stiffness tensor. For sand,
they can be calculated from (von Wolffersdorff [41]):

L = fb fe
1

T̂ : T̂

(

F 2
I + a2

T̂T̂

)

(4)

N = fb fe
F a

T̂ : T̂

(

T̂ + T̂
∗
)

(5)

Therein T̂ = T/trT is a dimensionless stress and
Iijkl = 0.5(δikδjl + δilδjk) is an identity tensor. The
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parameters a and F in Equations (4) and (5) describe
the failure criterion of Matusoka & Nakai [28] in the
deviatoric plane:

a =

√
3 (3 − sinϕc)

2
√

2 sinϕc

(6)

F =

√

tan2 ψ

8
+

2 − tan2 ψ

2 +
√

2 tanψ cos (3θ)
− tanψ

2
√

2
(7)

tanψ =
√

3 ‖T̂∗‖ (8)

cos (3θ) = −
√

6 tr
(

T̂
∗ · T̂∗ · T̂∗

)

/
[

T̂
∗

: T̂
∗
]

3

2

(9)

ϕc is the critical friction angle. The angles ψ and θ
describe the position of T in the stress space. The
factors fd, fe and fb consider the influence of pressure
(barotropy) and density (pyknotropy) on stiffness:

fd = rα
e =

(

e− ed

ec − ed

)α

(10)

fe =
(ec

e

)β

(11)

fb =

(

ei0

ec0

)β
hs

n

1 + ei

ei

(

3p

hs

)1−n

·

·
[

3 + a2 − a
√

3

(

ei0 − ed0

ec0 − ed0

)α]−1

(12)

Therein α, β, hs (granular hardness) and n are material
constants. The void ratios ed, ec and ei correspond to
the densest, the critical and the loosest possible state.
With increasing mean pressure p they decrease affine to
each other according to Equation (13) after Bauer [6]:

ei

ei0
=

ec

ec0
=

ed

ed0
= exp

[

−
(

3p

hs

)n]

(13)

In Equation (13) the index ”0” in ei0, ec0 and ed0 cor-
responds to the stress-free state (p = 0).

Niemunis [33] suggests to write Eq. (3) in an alter-
native form:

T̊ = L : (D − fd Y m ‖D‖) (14)

with the degree of non-linearity Y = ‖L−1 : N‖ and
the direction of flow m = −(L−1 : N)/‖L−1 : N‖. The
relationship between Y and the stress obliquity η = q/p
with p = −(T1 + 2T3)/3 and q = −(T1 − T3) was also
given by Niemunis (Eq. (4.167) in [33]):

Y = a

√

729F 4 + 18(a4 + 6a2F 2 + 36F 4)η2 + 4a4η4

√
3[9F (a2 + 3F 2) + 2a2Fη2]

(15)

2.2 Procedure for the determination of
the material constants after Herle
[16]

Eight material constants ϕc, hs, n, ed0, ec0, ei0, α and
β have to be determined. The procedure has been pro-
posed by Herle [16]:

• The critical friction angle ϕc can be determined
from undrained triaxial tests or from cone pluvi-
ation tests. In the cone pluviation test, ϕc is the
inclination of the cone.

• The granular hardness hs and the exponent n de-
scribe the decrease of the void ratios ei, ec, ed and
e with increasing mean pressure p (Eq. (13)). The
constants may be obtained from tests with a pro-
portional compression, i.e. a compression with a
linear path of deformation starting from the stress-
free state. An isotropic or an oedometric com-
pression test are suitable. Eq. (13) is fitted to
the measured curves e(p). Ideally, the initial void
ratio of the tests should be chosen in the range
ec0 ≤ e0 ≤ ei0. However, e0 = emax is thought to
be a satisfactory initial state (Herle [16]).

• According to Herle [16], the void ratios for asymp-
totic states at p = 0 can be estimated from ei0 ≈
1.15 emax, ec0 ≈ emax and ed0 ≈ emin.

• The constant α controls the influence of density
on the peak friction angle ϕP . In order to de-
termine α, tests with triaxial compression may be
performed on initially dense specimens. From the
stress ratioKP = T1/T3 at peak of the curves q(ε1)
and with the corresponding void ratios e, ec and
ed the constant α can be calculated:

α =

ln

[

6
(KP +2)2+a2KP (KP −1−tan νp)

a(5KP −2)(KP +2)
√

4+2(1+tan νP )2

]

ln re
(16)

with a from Eq. (6), the pressure-referenced rela-
tive density re according to Eq. (10) and

tan νP = 2
(KP − 4) +AKP (5KP − 2)

(5KP − 2)(1 + 2A)
− 1 (17)

A =
a2

(KP + 2)2

[

1 − KP (4 −KP )

5KP − 2

]

(18)

These equations may be derived by writing Eq. (3)
for triaxial compression and considering that the
stress rate vanishes at peak, i.e. setting Ṫ1 = Ṫ2 =
Ṫ3 = 0.
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An alternative procedure may be derived from
Eq. (14). In order to obtain T̊ = 0, the condi-
tion fdY = 1 must be fulfilled. This leads to

α =
ln(1/Y )

ln(re)
. (19)

For triaxial compression, F = 1 holds and Eq. (15)
simplifies towards

Y = a

√

729 + 18(a4 + 6a2 + 36)η2 + 4a4η4

√
3[9(a2 + 3) + 2a2η2]

(20)

The constant α may be obtained from Eqs. (19)
and (20) with triples (ηP , pP , eP ) of stress ra-
tio, mean pressure and void ratio at the peak of
the curves q(ε1). Eq. (19) is equivalent to (but
in the opinion of the authors slightly easier than)
Eq. (16). The pressure p enters Eqs. (16) and (19)
via ed and ec calculated from ed0 and ec0 using
Eq. (13).

• The constant β effects an increase of the stress rate
T̊ with increasing density at D = constant. It can
be obtained from oedometric tests on specimens
with different initial densities (e.g. the tests on
loose sand for hs and n can be supplemented by
tests on dense sand). For a certain pressure p the
void ratio e and the constrained modulus Es =
∆T1/∆ε1 are determined. T1 is the axial stress
corresponding to p and ε1 is the logarithmic axial
strain. If the two different densities are denoted
with tI and tII , the constant β is calculated from:

β =
ln

(

EsII

EsI

mI−nI fdI

mII−nII fdII

)

ln
(

eI

eII

) with (21)

m =
(1 + 2K0)

2
+ a2

1 + 2K0
2 and (22)

n =
a (5 − 2K0)(1 + 2K0)

3(1 + 2K0
2)

. (23)

(be aware that equations m = (2 +K0)
2 + a2 and

n = a(2+K0)(5−2K0)/3 given below Eq. (4.28) in
[16] are erroneous). These equations are obtained
by reducing Eq. (3) for the oedometric case (D2 =
D3 = 0) and evaluating Es = Ṫ1/D1. If the lateral
stress is not measured the coefficient K0 = T3/T1

can be estimated from the Jaky formula K0 = 1−
sinϕP .

In the Appendix several sets of material constants
that were published in the literature are summarized.
An UGM-like material was not tested yet.

3 Preliminary tests: Compar-

ison of cylindrical and pris-
matic triaxial specimens

In the monotonic triaxial tests for the determination of
the constant α specimens with a square cross section
(lateral dimensions 8.7 × 8.7 cm, height h = 18 cm)
were used for the following reason. The same equip-
ment (triaxial cell, end plates, moulds, membranes) was
intended to be used for the monotonic and the cyclic

triaxial tests. In some of the cyclic tests also the lat-
eral stress T3 was cyclically varied. In such case the
amplitude of volume changes measured via the pore
water is falsified by membrane penetration effects (e.g.
Nicholson [31]). Local measurements of lateral defor-
mations are indispensable to obtain a correct informa-
tion about the strain loop. The local measurement of
lateral deformations has been realized by using LDTs,
i.e. bending strips of phosphor bronze applied with
strain gauges (a method extensively used by Tatsuoka
and his co-workers, the technique is described e.g. by
Goto et al. [14] and Hoque et al. [20]). The application
of LDTs for the measurement of lateral deformations
demands a square cross section. Since the LDTs were
applied only for the cyclic tests they are not discussed
in detail here.

Specimens with a square cross section are being used
for triaxial tests since the middle of the 1990s. They
were employed to use lateral LDTs first by Hoque et
al. [20] for sand, by Hayano et al. [15] for sedimentary
soft rock, by Jiang et al. [22] and Anh Dan et al. [3]
for well-graded gravel and by Kongsukprasert et al. [24]
for cement-mixed sands (after Nawir et al. [30]). De-
spite its extensive use (mainly in Japanese laboratories)
specimens with a square cross section are sometimes set
into question because an inhomogeneous deformation
is expected. Surprisingly, experimental studies com-
paring a circular and a square cross section can hardly
be found in the literature. Thus, prior to the tests on
the UGM material, we have compared results of mono-
tonic triaxial tests with specimens with a circular and
a square cross section, respectively.

The preliminary tests were performed on a medium
coarse quartz sand (and not on UGM) since for sands
moulds for the preparation of cylindrical and prismatic
specimens were already available (for UGM a special
steel mould had to be manufactured in order to pre-
pare specimens with a proctor hammer, Section 5).
The used sand has a uniform grain size distribution
curve (mean grain size d50 = 0.55 mm, uniformity index
Cu = 1.8) and a sub-angular grain shape. The speci-
mens were prepared medium dense (ID0 = 0.55 - 0.58)
in the first four tests and dense (ID0 = 0.95 - 0.99) in
the three other ones (relative density is expressed by the
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Figure 1: Comparison of photos taken at different values of ε1 during the monotonic triaxial tests with different
specimen geometries

index ID = (emax − e)/(emax − emin) and index t0 de-
notes the initial value). For each of these two densities,
a cylindrical specimen with diameter d = 10 cm and
height h= 10 cm (h/d = 1), a cylindrical specimen with
d = 10 cm and h = 20 cm (h/d = 2) and a prismatic
specimen with a×b×h = 8.7×8.7×18.0 cm (h/a = 2.1)
were compared. Enlarged end plates were used for all
specimen geometries. The end plates were lubricated
with silicon grease and a thin membrane (thickness 0.4
mm) was placed on the grease layer. A good lubri-
cation is especially important for the short specimens
(h/d = 1). In order to study if multiple layers of sil-
icon grease and membranes are beneficial, Test No. 2
was performed with two such layers. The lateral effec-
tive stress was σ′

3 = 100 kPa in all tests. The short
specimens (h/d = 1) were sheared with displacement
rates u̇ = 0.05 mm/min (medium dense specimens) or
0.1 mm/min (dense), respectively, and the long ones
(h/d > 2) with u̇ = 0.1 mm/min (medium dense) or
0.2 mm/min (dense). Thus ε̇1 ≈ 0.05 %/min or 0.1
%/min holds for all tests.

Photos of the specimens at ε1 = 0 %, 10 % and 20
% are given in Fig. 1. As already observed by Bishop
& Green [7] cylindrical specimens with h/d = 1 failed
by expanding at the base (”elephant foot”). Bishop &
Green [7] reported that a rotation of the specimen by
180◦ prior to shearing lead to an expansion of the sam-
ples across the top plate. Thus, the lateral deformation
of such short samples seems to depend on the grav-
ity acting during preparation and not during shearing.
Cylindrical samples with h/d = 2 barrelled (Fig. 1).
According to Bishop & Green [7] this occurs indepen-
dently of the end restraint, i.e. it does not matter if the
end plates are lubricated or not. The ”elephant foot” or
the bulging became more pronounced with increasing
initial density of the specimen (Fig. 1). Interestingly,
in the case of the prismatic specimens bulging occurred
for medium dense sand and an expansion at the base
was observed for the dense sand. Shear zones became
visible only for the dense and long specimens, irrespec-
tively of the shape of the specimen cross section.

The curves q(ε1) and εv(ε1) of deviatoric stress or
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Figure 2: Comparison of curves q(ε1) and εv(ε1) from monotonic triaxial tests on a medium dense sand with
different specimen geometries

volumetric strain versus axial strain are plotted in
Fig. 2. The axial stress was calculated with the cross
sectional area A = V/h with the actual volume V and
the actual height h. In comparison to the long cylin-
drical specimens, the short cylindrical specimens reach
the peak deviatoric stress at a larger value of ε1 and
the drop of the curve q(ε1) behind the peak is less pro-
nounced (at least for the medium dense sand). In par-
ticular for the high initial density, the curves for the
specimen with the square cross section (h/d = 2.1) run
similar to the curves for the long cylindrical sample
(h/d = 2).

The peak friction angles ϕP are plotted versus the
void ratio at peak eP in Fig. 3. The values ϕP for the
short cylindrical specimens with one lubrication layer
lie approx. 1◦ higher than for the long cylindrical sam-
ples. The use of two lubrication layers instead of one
seems to reduce ϕP , i.e. the ϕP -values come closer to
the data obtained for the long cylindrical specimens.
The prismatic specimens have only slightly lower ϕP -
values than the long cylindrical samples.

From these preliminary tests it may be concluded
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Figure 3: Peak friction angle ϕP as a function of void
ratio at peak eP for different specimen geometries

that circular and prismatic specimens deliver similar
test results, i.e. the shape of the cross-section of a sam-
ple has only a minor effect. This was also confirmed for
tests with cyclic loading as will be presented in a future
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paper. Thus, the use of specimens with a square cross-
section does not imply any disadvantage in connection
with the determination of the hypoplastic constant α.

4 Tested Unbound Granular
Material

The grain size distribution curve (Fig. 4) used in the
tests is in accordance with the Colombian Specifica-
tion [13] for base layer construction in flexible pave-
ments except for the maximum grain size. It was re-
duced to dmax = 16 mm in order to not fall below a
ratio a/dmax of 5 with a × b being the dimensions of
the specimen cross section in the triaxial tests. The
mean grain diameter is d50 = 6.3 mm and the coeffi-
cient of uniformity is Cu = d60/d10 = 100. The curve
was mixed from different gradations of a quartz sand

with subangular grain shape. For the fine particles a
quartz meal was used. The maximum density accord-
ing to German Standard Code DIN 18126 is %d,max =
2.163 g/cm3 (determined with a shaking table) and the
minimum one is %d,min = 1.835 g/cm3. These values
correspond to emin = 0.225 and emax = 0.444. A value
%s = 2.65 g/cm3 was obtained for the specific weight
using a pyknometer. Fig. 5 presents the results of a
Proctor test with modified energy (E = 2700 kNm/m2,
weight × falling height). The maximum dry density is
%Pr = 2.30 g/cm3 and the optimum water content is
wopt = 5.2 %.

5 Determination of hypoplastic
material constants

The critical friction angle ϕc = 38.0◦ was determined
as the inclination of a pluviated cone (height approx.
12 cm). Segregation effects on ϕc can be neglected [17].

The granulate hardness hs and the exponent n were
determined from the curves e(p) from four oedometric
compression tests on dry, initially loose material (rel-
ative density index ID0 = 0.01 - 0.10). For a better
reproducibility of the tests large specimen dimensions
(diameter 28 cm, height 8 cm) were chosen. The test
device is presented in Fig. 6. Specimens were prepared
by pouring dry sand with a spoon. The measured
curves e(p) are given in Fig. 7 (upper four curves).
The lateral stress was estimated as T3 = K0T1 with
K0 = 1− sin(ϕc) and the mean pressure was calculated
from p = −(T1 + 2T3)/3. Eq. (13) was fitted to each
curve e(p) resulting in the constants hs and n as sum-
marized in Table 1. Mean values hs = 97 MPa and n
= 0.24 were set into approach.
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28 cm

8 
cm

displacement
transducer

specimen

load cell

     axial load
 (pneumatic system 
    with lever arm)

Figure 6: Device for oedometric compression of large
specimens (d = 28 cm, h = 8 cm)

Test No. 1 2 3 4 Mean

ID0 0.10 0.01 0.06 0.09
eB0 0.456 0.484 0.474 0.450 0.466

hs [MPa] 104 116 83 86 97
n 0.247 0.221 0.228 0.275 0.24

Table 1: Summary of constants hs and n determined
from four oedometric compression tests (eB0 is the ex-
trapolated void ratio at zero pressure)
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Figure 7: Oedometric compression tests on loose and
medium dense specimens (experiment and simulation,
e0 is the void ratio after sample preparation at p ≈ 0.6
kPa)

The limit void ratios at zero pressure were esti-
mated from the relations ed0 ≈ emin, ec0 ≈ emax and
ei0 ≈ 1.15emax (for well-graded soils) as proposed by
Herle [16] with emin = 0.225 and emax = 0.444 being
the minimum and maximum void ratios according to
DIN 18126.

For the determination of the constant α three mono-
tonic triaxial tests on specimens with large initial den-
sities (ID0 = 1.06 - 1.13, dry density > 95% of %Pr)
were performed. The effective lateral stresses were T3

= -50, -100 and -200 kPa, respectively.

For the laborious specimen preparation a steel mould
consisting of four plates was fixed to the bottom end
plate of the triaxial cell (Fig. 8a). The specimen prepa-
ration was performed outside the triaxial cell in order
to save the load cell which in the used triaxial devices
(a scheme is given in Fig. 9) is located below the bot-
tom end plate. Specimens were prepared by tamp-
ing in n = 6 layers each with a thickness of 3 cm.
The material was in the moist condition (water con-
tent w = wopt = 5.2%). A miniature proctor hammer
(Fig. 8b) was used. Its fall weight (m = 1 kg, i.e. W =
10 N) was dropped from a height of H = 20 cm and N
= 250 blows were applied to each layer. An energy per
volume (total volume of a specimen V = 1362 cm3) in
the order of magnitude of

E =
N n W H

V
≈ 2200 kNm/m

3
(24)

was induced into a specimen. It was chosen lower than
the energy used in the modified Proctor test in order to
reach densities slightly lower than the modified Proctor
density (95 - 97 % of %Pr), i.e. densities that are typical
for UGMs in situ.

After tamping of the specimen the bottom end plate
with the specimen was placed into the triaxial cell and
the steel mould was removed (Figs. 8c,d). The speci-
men stands due to capillary pressure. Afterwards the
membrane (diameter 110 mm, thickness 0.6 mm) was
placed using a stretcher with square cross section (Fig.
5e). The specimen end plates have a special shape at
the transition from the square to the round cross sec-
tion. The round cross section is necessary to enable
a proper sealing of the membrane by O-rings. Fig. 8f
presents a specimen after the top plate was placed, the
membrane was sealed, the triaxial cell was mounted
and filled with water and the cell pressure was applied.
Finally, the specimens were saturated with de-aired wa-
ter.

Fig. 10 shows photos taken at different values of ε1
during a test. Up to the peak the deformation is quite
homogeneous but with continued shearing the upper
part of the specimen expands. This is in contrast to
the tests on dense sand (Section 3) where the specimen
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Figure 8: Procedure for the preparation of an UGM specimen for triaxial tests: a) Steel mould fixed to the bottom
end plate of the triaxial cell (preparation outside device) b) Moist tamping of specimen with miniature proctor
hammer c) Specimen after removal of one side of the mould d) Specimen after removal of all sides of the mould e)
Placement of membrane with a special stretcher f) Specimen prior to shearing

load cell



displ. transducer (axial deform.)



pressure transducers
(cell- and back pressure)

differential
pressure
transducer



back pressure

soil specimen (8.7 x 8.7 x 18 cm)

drainage

cell pressure T3

ball bearing

Volume
measuring
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Figure 9: Scheme of the used triaxial device
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expanded at the bottom. The observation may be ex-
plained by the fact that in comparison to the lower part
of the sample, the upper part has experienced a lower
number of blows during the preparation procedure.

Figure 10: Photos of an UGM specimen at different
stages during a monotonic triaxial test
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Figure 11: q vs. ε1 in monotonic triaxial tests with dif-
ferent confining pressures (experiment and simulation)

The curves of deviatoric stress q and volumetric
strain εv versus axial strain ε1 are presented in Figs. 11
and 12. In Fig. 13 the peak stresses are shown in
the p-q-plane. The well known decrease of the peak
stress ratio ηP = qP /pP with increasing lateral effec-
tive stress −T3 would be even more pronounced if Test
No. 1 would have been performed with a slightly higher
initial density (similar to the values in the two other
tests).

The constant α was determined from Eq. (19). The
triples (ηP , pP , eP ) from the three tests and the result-
ing values α are summarized in Table 2. The mean
value α = 0.14 has been obtained and further used.

It was interesting to know, if the specimen prepa-
ration method with the miniature proctor hammer or
the high axial stresses during the tests affect the grain
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Figure 12: εv vs. ε1 in monotonic triaxial tests with
different confining pressures (experiment and simula-
tion)

size distribution curve, i.e. if particle crushing takes
place. A sieving was conducted after each monotonic
triaxial test. In Fig. 1 the curves obtained after the
tests are compared to the original one. A slight move-
ment of the curves to the left, i.e. to smaller grain
sizes was detected. The shift was observed to be larger
with increasing lateral stress of the test. This could
give hints for particle crushing, which is partly caused
during specimen preparation and partly during a test.
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Figure 13: Peak stresses in the p-q-plane

The constant β was obtained from Eq. (21), i.e.
from a comparison of the oedometric moduli for two
different initial densities. The tests on loose UGM
material (ID0 = 0.01 - 0.10) were supplemented by
three tests on medium dense specimens (ID0 = 0.52 -
0.58). These tests were also performed on dry spec-
imens. The UGM material was placed by pouring
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Test No. T3 ID,prep ID0 %d/%Pr qPeak pPeak ηPeak YPeak ePeak ϕPeak α
[kPa] [-] [-] [%] [kPa] [kPa] [-] [-] [-] [◦] [-]

1 -50 1.06 1.06 95.1 487.9 214.2 2.278 1.174 0.221 55.6 0.147
2 -100 1.13 1.14 96.3 881.9 394.3 2.237 1.167 0.203 54.5 0.123
3 -200 1.10 1.11 95.8 1613.3 738.4 2.185 1.158 0.205 53.2 0.149

Mean 1.10 1.10 2.23 0.210 54.4 0.14

Table 2: Summary of constants α determined from three monotonic triaxial compression tests (ID,prep = relative
density after preparation, ID0 = relative density after consolidation)

ϕc hs n ed0 ec0 ei0 α β
[◦] [MPa] [-] [-] [-] [-] [-] [-]

38 97 0.24 0.225 0.444 0.511 0.14 3.2

Table 3: Hypoplastic constants of the tested UGM
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Figure 14: Approximation of peak friction angle used
for the analysis of the oedometric compression tests on
medium dense specimens (determination of constant β)
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Figure 15: Exponent β evaluated for different mean
pressures p

with a spoon and afterwards compacted by vibration
(lateral hits to the oedometer chamber with a rub-
ber hammer). The measured curves e(p) are given in
Fig. 7 (lower three curves). For the tests with ID0

= 0.52 - 0.58 the lateral stress was calculated using
K0 = 1−sin(ϕP ) with the peak friction angle estimated
from ϕP = 54.4◦− 70.1◦(e− 0.210). This equation was
derived from the knowledge of the critical friction angle
ϕc = 38.0◦ at e ≈ emax = 0.444 and the peak friction
angle ϕP = 54.4◦ at eP = 0.210 (mean value from the
triaxial tests) and is illustrated in Fig. 14.

The constant β was evaluated for different mean
pressures p. Fig. 15 reveals a significant decrease of
β with p (a problem already detected also for other
sands). Thus, it is not clear, which value of β should
be chosen. A value β = 3.2 at p = 100 kPa was selected.
In comparison to most values documented in the liter-
ature (see Appendix) this β-value is large. However,
Herle [17] and Schünemann [39] report on similar val-
ues for limestone rockfill and ballast, respectively.

Finally, the eight hypoplastic constants are summa-
rized in Table 3.

6 Re-calculation of element tests

(numerical simulations)

The oedometric and triaxial tests were re-calculated
with an element test program in which the hypoplas-
tic model in the version proposed by von Wolffersdorff
is implemented. The curves e(p), q(ε1) and εv(ε1) of
the simulations are added to Figs. 7, 11 and 12. In
the case of the oedometric tests calculations are shown
for the two initial void ratios e0 = 0.44 and 0.33. The
curves calculated with β = 3.2 were supplemented by
those with β = 3.8 since this constant was found to
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predict better the position of the peaks in the triax-
ial tests. However, as expected the re-calculation of
the oedometric compression tests on the medium dense
specimens look worse with β = 3.8 than with β = 3.2.
In general, the agreement of the curves predicted by
hypoplasticity and the experimental data is quite sat-
isfactory.

7 Summary, conclusions and
outlook

The determination of the material constants of the
Wolffersdorff hypoplastic model [41] for an unbound
granular material (UGM, mean grain size d50 = 6.3
mm, coefficient of uniformity Cu = 100) as used for
base and subbase layers of flexible pavements is pre-
sented. Up to the present work, a set of hypoplastic
material constants for an UGM was not documented in
the literature. It is demonstrated that correlations of
the constants with the granulometric properties (d50,
Cu) established for sand with 0.16 mm ≤ d50 ≤ 2.0
mm and 1.4 ≤ Cu ≤ 7.2 cannot be extrapolated for
such well-graded materials. In order to determine a set
of material constants for an UGM the procedure pro-
posed by Herle [16] was applied. The triaxial tests were
performed with specimens with a square cross-section.
In a preliminary test series it was found that cylindrical
and prismatic specimens deliver similar test results. In
re-calculations of oedometric and triaxial tests a good
prediction of the hypoplastic model could be demon-
strated.

The further research will concentrate on permanent
deformations of UGMs under cyclic loading. The re-
sults of cyclic triaxial tests with constant and variable
confining pressure will be presented in a future publi-
cation together with possible constitutive descriptions.
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sertation, Veröffentlichungen des Instituts für Bo-
denmechanik und Felsmechanik, Universität Karl-
sruhe, Heft 166, 2006.

[9] Shell International Petroleum Company. Shell
Pavement Design Manual - Asphalt Pavement and
Overlays for Road Traffic, London. , 1978.

[10] R. Cudmani. Modelación numérica de estructuras
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Appendix B: Summary of hypoplastic constants for various materials

Material Grain shape d50 Cu %s ϕc hs n ed0 ec0 ei0 α β Ref.

[mm] [-] [g/cm3] [◦] [MPa] [-] [-] [-] [-] [-] [-] [-]

Sandy fill 2.65 32.1 4000 0.25 0.55 0.95 1.05 0.07 1.00 [8]
Silty Sand I (S) 2.65 32.9 750 0.45 0.831 1.281 1.41 0.05 1.00
Silty Sand II (S) 2.65 37.2 1200 0.27 0.53 0.864 0.996 0.127 1.05
Stuttgart (S) 2.65 33.0 2600 0.30 0.60 0.98 1.15 0.10 1.00
Quartz (S) 0.25 2.35 33.0 2600 0.30 0.60 0.98 1.15 0.10 1.00 [10]
Tierra Blanca 36.0 100 0.10 0.90 1.40 1.60 0.08 1.00
Ticino (S) compact 0.53 1.60 2.67 31.0 250 0.68 0.59 0.94 1.11 0.11 1.00 [11]
Toyoura (S) subrounded 0.21 1.30 2.65 32.0 120 0.69 0.61 0.98 1.13 0.12 1.00
L. Buzzard (S) compact 0.85 1.30 2.65 31.0 6400 0.45 0.49 0.79 0.94 0.16 1.00
Hokksund (S) subround. - ang. 0.43 2.20 2.70 31.0 150 0.70 0.53 0.87 1.01 0.09 1.00
Monterey (S) subround. 0.37 1.60 2.65 32.0 8000 0.35 0.54 0.83 0.90 0.07 1.00
Quiou (S) subround. - ang. 0.50 3.50 2.66 36.0 75 0.45 0.831 1.281 1.41 0.05 1.00
Dogs Bay (S) subround. - ang. 0.25 2.66 2.75 40.3 30 0.72 0.981 1.827 2.192 0.05 1.00
Kleinkoschen (S) subround. - ang. 0.50 3.10 2.64 34.0 7450 0.11 0.45 0.90 1.04 0.14 1.00
Zwenkau B (S) 0.4-0.75 7-12 2.63 32.0 42 0.22 0.60 1.14 1.31 0.10 3.00
Zwenkau C (S) 0.2-0.75 50-22 2.43 30.0 10 0.26 0.73 1.28 1.48 0.14 1.50
Zwenkau D (S) 0.15-0.35 12-4.5 2.65 30.0 80 0.24 0.61 1.10 1.27 0.10 2.40
Erksak (S) subround. 0.355 2.20 2.65 30.0 80 0.65 0.525 0.85 1.00 0.11 1.00
Mai-Liao (S) subround. - ang. 0.12 2.50 2.69 31.5 32 0.324 0.57 1.04 1.20 0.40 1.00
Toyoura (S) ang./subrounded 0.16 1.46 2.64 30.0 2600 0.27 0.61 0.98 1.10 0.18 1.00 [16]
Hochstetten (S) subrounded 0.20 1.60 2.65 33.0 1500 0.28 0.55 0.95 1.05 0.25 1.50
Schlabendorf (S) subrounded 0.25 3.09 2.65 33.0 1600 0.19 0.44 0.85 1.00 0.25 1.00
Hostun (S) ang./subrounded 0.35 1.68 2.67 31.0 1000 0.29 0.61 0.91 1.09 0.13 2.00
Karlsruhe (S) subrounded 0.40 1.85 2.65 30.0 5800 0.28 0.53 0.84 1.00 0.13 1.05
Zbraslav (S) ang./subrounded 0.50 2.62 2.65 31.0 5700 0.25 0.52 0.82 0.95 0.13 1.00
Ottawa (S) round.-subround. 0.53 1.70 2.66 30.0 4900 0.29 0.49 0.76 0.88 0.10 1.00
Ticino (S) ang./subround. 0.55 1.40 2.68 31.0 5800 0.31 0.60 0.93 1.05 0.20 1.00
Silver Leighton Buzzard (S) subround. 0.62 1.11 2.66 30.0 8900 0.33 0.49 0.79 0.90 0.14 1.00
Hochstetten (G) subrounded 2.00 7.20 2.65 36.0 32000 0.18 0.26 0.45 0.50 0.10 1.80
Kunststoff subrounded 3.00 1.00 1.07 32.0 110 0.33 0.53 0.73 0.80 0.08 1.00
Weizen subrounded 3.70 1.00 1.25 39.0 20 0.37 0.57 0.84 0.95 0.02 1.00
Lausitz (S) subrounded 0.25 3.09 2.65 33.0 1600 0.19 0.44 0.85 1.00 0.25 1.00 [18]
Sedlec (L) 0.02 150 2.70 30.0 0.79 0.126 0.73 1.37 1.58 0.15 1.00 [17]
Limestone (RF) subrounded 20 2.72 38.0 10 0.36 0.31 0.68 0.78 0.10 3.10
Hochstetten (S) 33.0 1000 0.25 0.55 0.95 1.05 0.25 1.50 [27]
Colentina (G) 36.0 170 0.225 0.62 0.99 1.13 0.10 1.00
Mostistea (S) 36.0 320 0.28 0.26 0.45 0.50 0.10 1.80
Eisenbahnschotter (B) 50.0 150 0.40 0.65 1.00 1.15 0.05 4.00 [39]
Sand 1 (S) subangular 0.55 1.80 2.65 31.2 591 0.50 0.577 0.874 1.005 0.12 1.00 [45]
ZFS (S) subangular 0.21 2.00 2.66 32.8 5580 0.30 0.575 0.908 1.044 0.12 1.60
Stuttgart (G) 2.80 37.0 190 0.52 0.58 0.88 1.06 0.25 1.50 [42]
Kelsterbach (S) 0.90 33.0 290 0.42 0.52 0.82 1.00 0.25 1.10
Granular material I (S) 1.60 34.0 332 0.47 0.625 0.862 0.991 0.25 1.50
Granular mat. II (G) 4.00 38.0 58 0.70 0.655 0.823 0.946 0.25 1.10

Table 4: B = ballast; G = gravel; L = loess; RF = rockfill; S = sand.


