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Prediction of permanent deformations in pavements

using a high-cycle accumulation model

T. Wichtmanni), H. A. Rondónii), A. Niemunisiii), Th. Triantafyllidisiv), A. Lizcanov)

Abstract: The present paper discusses the application of a high-cycle accumulation (HCA) model originally developed
for sand for the prediction of permanent deformations in unbound granular material (UGM) used for base and subbase
layers in pavements. Cyclic triaxial tests on pre-compacted samples of an UGM have been performed in order to validate
and calibrate the model. The stress amplitude, the initial density and the average stress were varied. The test results
are compared to those of air-pluviated samples of sand (subgrade material). Some significant differences in the behavior
of both materials under cyclic loading are outlined. It is demonstrated that the functions describing the intensity of
accumulation can be maintained for UGM with different material constants, but that the flow rule must be generalized in
order to describe anisotropy. Recalculations of the laboratory tests show a good prediction of the modified HCA model.

CE Database subject headings: Pavements; Unbound granular material (UGM); Permanent deformations; High-cycle
accumulation model; Cyclic triaxial tests

1 Introduction

Traffic loading leads to permanent deformations in the base
and subbase layers and in the subgrade of pavements. Even
small rates of deformation accumulation may lead to sig-
nificant settlements after several years of operation.

In order to predict the permanent deformations in pave-
ments empirical equations have been developed. The for-
mulas usually give the vertical strain ε1 or the settlement s
as a function of the number of cycles N . More recent equa-
tions (e.g. Huurman [10], Werkmeister et al. [32], Gidel
et al. [7], Uzan [30], see also the review by Rondón &
Reyes [22]) consider the influence of the stress path during
the cycles. However, most of the equations are applicable
to very simple cases only, that means to soil layers under
level ground subjected to one-dimensional cycles where the
minimum deviatoric stress during the cycles is zero. Ex-
cept the formulas based on large-scale tests (e.g. using a
so-called High Vehicle Simulator), the multi-dimensionality
of the stress or strain path in the soil is not considered.

The common empirical formulas may suffice for the sim-
ple one-dimensional case. However, for more complicated
boundary value problems (e.g. the transition zone of a
pavement and a bridge abutment) these equations are too
simple and more general prediction tools are necessary. The
high-cycle accumulation (HCA) model proposed by Niemu-
nis et al. [20] (Section 3) along with the finite element
method (FEM) and an ”explicit” or ”N-type” calculation
strategy (Section 2) may serve as such a tool.

The HCA model was originally developed for sand. It
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predicts the permanent deformations due to a high-cyclic
loading, that means a loading with a large number of cycles
N > 103 and with small strain amplitudes εampl < 10−3. It
has been validated and calibrated for various sands with dif-
ferent grain size distribution curves (Wichtmann et al. [37]).

The present paper discusses an application of the HCA
model to an unbound granular material (UGM) used for
base and subbase layers in pavements. For that purpose
cyclic triaxial tests have been performed on a typical UGM
(Section 4). The amplitude, the initial density and the av-
erage stress have been varied. The experimental results are
compared to those for a medium-coarse to coarse sand (Sec-
tion 5). Necessary modifications of the HCA model for an
application to the UGM are discussed. A good prediction
of the experimental data by the modified HCA model is
demonstrated by means of recalculations of the laboratory
tests (Section 6).

Readers familiar with the explicit calculation strategy
and with the HCA model may skip the next two sections
containing a review and may continue with Section 4.

2 Explicit calculation strategy
Two different calculation strategies can be used for finite
element (FE) calculations of boundary value problems with
cyclic loading. The first one is called ”pure implicit”. It
is illustrated for a shallow foundation in Fig. 1a. Each
cycle is calculated with many increments using a conven-
tional constitutive model formulated in terms of the rates
of stress (σ̇) and strain (ε̇). Elastoplastic multi-surface
models [3, 18] or the hypoplastic model with intergranular
strain [19, 31] may be used for that purpose. The accumu-
lation of permanent deformations results from the fact that
the stress-strain-loops are not perfectly closed. The pure
implicit strategy is suitable only for small numbers of cy-
cles (N < 50). For larger numbers of cycles the numerical
error becomes excessive (Niemunis et al. [20]), let alone the
large calculation effort.

For large numbers of cycles another calculation strategy
is necessary. It is shown in Fig. 1b. Only a few cycles are
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calculated implicitly with many strain increments. Larger
packages of cycles between are calculated ”explicitly”. The
explicit parts of the calculation require a constitutive for-
mulation which takes packages of cycles ∆N as input and
which predicts the permanent strain due to these packages
directly, without tracing the oscillating strain path during
the individual cycles. Such a constitutive formulation is
called ”high-cycle accumulation (HCA) model”. The ex-
ternal load is kept constant during the explicit parts of
the calculation. Therefore, the accumulation of permanent
strain due to cyclic loading is treated similarly as a creep
deformation in viscoplastic models.
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Fig. 1: Pure implicit versus combined implicit and explicit FE
calculation of the settlement of a shallow foundation under cyclic
loading

An important input parameter of the HCA model is the
strain amplitude εampl (Section 3). In order to determine
the spatial field of the strain amplitude the implicit parts
of the calculation are necessary. The first cycle may be
irregular since the deformations in the first cycle can sig-
nificantly differ from those in the subsequent cycles. The
second cycle is more representative for the elastic portion of
deformation during the subsequent cycles. Therefore, the
strain amplitude is determined from the second cycle. For
that purpose the strain path during the cycle is recorded
in each integration point of the FE model. The strain am-
plitude is determined from the strain path according to the
procedure described by Niemunis et al. [20]. During the
explicit parts of the calculation the strain amplitude is as-
sumed constant. During cyclic loading the spatial field of
the strain amplitude may change due to compaction or a
re-distribution of stress. Therefore, the explicit calculation
should be interrupted after definite numbers of cycles (e.g.
at N = 10, 100, 1000, etc.) and a so-called control cycle
should be calculated implicitly in order to update the strain
amplitude (Fig. 1b). The necessary number of control cy-
cles depends on the boundary value problem and on the
material under consideration.

3 High-cycle accumulation model
The HCA model proposed by Niemunis et al. [20] has
been developed based on numerous drained cyclic triaxial
and cyclic multiaxial DSS tests on sand (Wichtmann [33],
Wichtmann et al. [34–36]). Deficits (lack of generality,
missing influencing parameters, 1D formulation) of older
HCA models proposed in the literature have been discussed
in [33].

The strain and the stress path that result from a cyclic
loading can be decomposed into an oscillating part (ampli-
tude) and a trend (accumulation). The HCA model pre-
dicts the trends. The oscillating part is described by the
strain amplitude. The basic equation of the HCA model
reads

σ̇ = E : (ε̇ − ε̇
acc − ε̇

pl) (1)

The dot over a symbol means a derivative (rate) with re-
spect to the number of cycles, that means

ṫ = ∂ t /∂N. (2)

The colon in Eq. (1) means a double contraction (Gibbs
notation). σ̇ is the trend of the effective stress σ (stress
rate) and ε̇ is the trend of strain (strain rate). The sign
convention of soil mechanics is used (i.e. compression pos-
itive). The HCA model prescribes the rate of strain accu-

mulation ε̇
acc. The plastic strain rate ε̇

pl is only necessary
for stress paths touching the yield surface (see Niemunis
et al. [20]). All stress and strain quantities in Eq. (1) are
second-order tensors. E in Eq. (1) is a barotropic elastic
stiffness (fourth-order tensor). Depending on the bound-
ary conditions, the equilibrium iteration leads to a change
of the average stress (σ̇ 6= 0) and/or to an accumulation of
residual strain (ε̇ 6= 0).

For the presribed rate of strain accumulation in Eq. (1)
the following expression is used:

ε̇
acc = ε̇acc m (3)

Therein the direction of strain accumulation (”cyclic flow
rule”)

m = ε̇
acc/‖ε̇acc‖ (4)

is a unit second-order tensor which describes the ratio be-
tween deviatoric and volumetric strain accumulation. The
symbol ‖ t ‖ means the Euclidean norm of a tensor. The
scalar intensity of strain accumulation in Eq. (3) is

ε̇acc = ‖ε̇acc‖. (5)

For sand it has been found experimentally [34] that the
direction of strain accumulation primarily depends on the
average stress ratio

ηav = qav/pav. (6)

The index tav denotes the average value of t during a cycle.
For the triaxial case Roscoe’s invariants (mean pressure p
and deviatoric stress q) are defined as

p = (σ1 + 2σ3)/3 and q = σ1 − σ3 (7)

with σ1 and σ3 being the axial and the lateral effective
stress components, respectively. According to [34], cycles
applied at an isotropic average stress (ηav = 0) cause a
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pure volumetric accumulation while a pure deviatoric ac-
cumulation takes place at an average stress ratio ηav = Mc

or ηav = Me corresponding to the critical state lines for
triaxial compression or extension, respectively:

Mc =
6 sinϕc

3 − sin ϕc

and Me = −
6 sinϕc

3 + sin ϕc

(8)

with ϕc being the critical friction angle. It has been demon-
strated in [34] that the direction of accumulation can be
well approximated by the flow rule of the modified Cam
clay (MCC) model:

m =

[
1

3

(

p −
q2

M2p

)

1 +
3

M2
σ

∗

]→

(9)

The superposed arrow denotes an Euclidean normalization
operator t→ = t/‖ t ‖. The deviatoric part of stress is
defined as

σ
∗ = σ −

1

3
tr σ 1 (10)

with tr σ being the trace of the stress tensor and with an
identity tensor 1. M in Eq. (9) is defined as

M = F Mc (11)

with

F =







1 + Me/3 for η ≤ Me

1 + η/3 for Me < η < 0
1 for η ≥ 0

(12)

For the triaxial case Eq. (9) predicts strain rate ratios

ω =
ε̇acc

v

ε̇acc
q

=
M2 − ηav2

2ηav
(13)

with ε̇acc
v and ε̇acc

q being the rates of volumetric and devi-
atoric strain accumulation, respectively, with Roscoe’s in-
variants

ε̇v = ε̇1 + 2ε̇3 and ε̇q =
2

3
(ε̇1 − ε̇3) (14)

Therein ε̇1 and ε̇3 are the rates of axial and lateral strain,
respectively.

The intensity of strain accumulation ε̇acc in Eq. (3) is
calculated as a product of six functions:

ε̇acc = fampl ḟN fe fp fY fπ (15)

Each function (see Table 1) considers the influence of a
different parameter.

The function fampl (see Table 1) describes the increase of
the intensity of accumulation with increasing strain ampli-
tude εampl. For various sands the exponent Campl (material
constant) was found to be approx. 2.0 up to strain ampli-
tudes of about 10−3 [37]. For larger strain amplitudes, the
accumulation rate was observed to be almost independent
of the strain amplitude [33].

The strain trajectories in a pavement due to a moving
traffic load are multi-axial, that means they imply a rota-
tion of the principal stress directions (Lekarp et al. [12]).
The effect of the shape of the strain loop regarding the rate
of strain accumulation has been confirmed experimentally
(Pyke et al. [21], Wichtmann et al. [35]). It has been shown

Function Const. Sand UGM

fampl =

(

εampl

εampl
ref

)Campl

≤ 100 Campl 2.0 1.1

fe =
(Ce − e)2

1 + e

1 + eref

(Ce − eref)2
Ce 0.54 0.07

eref 0.874 0.444

fp = exp

[

−Cp

(
pav

pref
− 1

)]

Cp 0.43 -0.22

fY = exp
(
CY Ȳ av

)
CY 2.0 1.8

ḟN = ḟA
N + ḟB

N CN1 3.6 · 10−4 5.2 · 10−4

ḟA
N = CN1CN2 exp

[
−gA

CN1fampl

]

CN2 0.43 0.03

ḟB
N = CN1CN3 CN3 5.0 · 10−5 1.3 · 10−5

Table 1: Summary of the functions and the material constants

of the HCA model (pref = 100 kPa, εampl
ref

= 10−4, eref = emax)

that circular strain loops produce twice larger accumula-
tion rates than one-dimensional cycles. The HCA model
incorporates a tensorial definition of the amplitude for such
multi-axial strain loops [20]. The present paper discusses
only laboratory tests with uniaxial cycles. In that case the
novel amplitude definition is equal to the conventional one,
that means

tampl =
1

2
(tmax − tmin). (16)

The function fe in Eq. (15) (see Table 1) with its mate-
rial constant Ce describes the increase of the rate of strain
accumulation with increasing void ratio e.

For a constant average stress ratio ηav, the intensity of
strain accumulation increases with decreasing average mean
pressure pav. For a constant average mean pressure, the
permanent strain accumulation increases with increasing
average stress ratio. These dependencies were observed for
various sands [37]. They are captured by the exponential
functions fp and fY with material constants Cp and CY ,
respectively (see Table 1). In the function fY the stress
ratio is described by Ȳ av instead of ηav, using the function
Y of Matsuoka & Nakai [16]:

Ȳ =
Y − 9

Yc − 9
with Yc =

9− sin2 ϕc

1− sin2 ϕc

and (17)

Y =
27(3 + η)

(3 + 2η)(3 − η)
(18)

The stress ratio Ȳ av is zero at an isotropic average stress
and equal to one on the critical state lines.

The increase of the permanent strain εacc with increasing
number of cycles runs proportional to the function fN of
the HCA model:

εacc(N) ∼ fN = CN1 [ln(1 + CN2N) + CN3N ] (19)

with material constants CN1, CN2 and CN3. Its derivative
with respect to N reads

ḟN =
CN1CN2

1 + CN2N
︸ ︷︷ ︸

ḟA

N

+ CN1CN3
︸ ︷︷ ︸

ḟB

N

(20)
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It can be splitted into a N -dependent portion ḟA
N and a con-

stant portion ḟB
N . The number of cycles alone is not a suit-

able state variable for the quantification of cyclic preloading
(historiotropy) since it contains no information about the
amplitude of the cycles in the past. For that reason, the
preloading (historiotropic) variable gA was introduced into
the HCA model. It counts the cycles weighting them with
their amplitude

gA =

∫

fampl ḟ A
N dN (21)

Only the N -dependent portion of ḟN is considered for gA.
The function ḟA

N was re-formulated using gA instead of N
(see Table 1). The HCA model with its historiotropic vari-
able gA is able to predict the accumulation of strain due to
packages of cycles with different amplitudes applied in dif-
ferent sequences. The model approximately obeys Miner’s
rule [17] known from fatigue mechanics of metals, that
means the sequence of the packages of cycles is of no im-
portance, which is in good accordance with the experiments
presented by Kaggwa et al. [11] and Wichtmann [33].

The factor fπ in Eq. (15) considers that a change of the
polarization (direction) of the cycles leads to a temporary
increase of the rate of accumulation (Wichtmann et al. [35],
Yamada & Ishihara [39]). A detailed description of this fac-
tor can be found in [20]. Due to the constant polarization
of the cycles fπ = 1 holds for the triaxial tests presented
herein.

Since the accumulation of residual strain does not de-
pend on the loading frequency (Youd [40], Shenton [26],
Wichtmann et al. [34], Duku et al. [6]), the loading fre-
quency is not a parameter of the HCA model.

4 Description of the tests
4.1 Tested materials
The grain size distribution curves and the index properties
of the tested materials are shown in Fig. 2. The tested sand
is medium coarse to coarse and rather uniform. The grain
size distribution curve of the UGM is in accordance with
the Colombian Specification [5] for base layer construction
in flexible pavements except for the maximum grain size.
It was reduced to dmax = 16 mm in order not to fall below
a ratio b/dmax of 5 with b × b being the dimensions of the
specimen cross section in the triaxial tests. Both grain size
distribution curves were mixed from a natural quartz sand
with subangular grains and a specific weight of %s = 2.65
g/cm3. In the case of the UGM a quartz meal was used
for the fine particles. The minimum and maximum void
ratios given in Fig. 2 were determined according to German
standard code DIN 18126 [1].

4.2 Test device and specimen preparation
A scheme of the used triaxial device has been shown by
Rondón et al. [23]. For the tests on sand cylindrical speci-
mens with a diameter d = 10 cm and a height h = 20 cm
were used. The UGM specimens were prismatic with di-
mensions 8.7 × 8.7 × 18 cm. The square cross section was
chosen because it is advantageous for local measurements
of the lateral strain by means of so-called LDTs (Goto et
al. [8]). Lubricated end plates equipped with a thin rubber
membrane and with small central porous stones were used.
The tests were performed drained and stress-controlled.
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Fig. 2: Grain size distribution curves and index properties of
the tested materials

The cyclic axial load was applied with a pneumatic loading
system.

The axial load was measured inside the pressure cell with
a load cell located below the bottom end plate. The axial
deformation was obtained from a displacement transducer
attached to the load piston. The system compliance was
determined in preliminary tests on a steel dummy and was
subtracted from the measured displacement. In [23] it has
been demonstrated that the axial strain determined in that
way is in good agreement with the axial strain measured
locally in the middle of the specimen by means of LDTs.
For that reason, local measurements were left out in the
present study. Volume changes were measured via the pore
water of the fully saturated specimens using a pipette sys-
tem and a differential pressure transducer. The data were
recorded during the first 25 cycles and during five cycles at
N = 50, 100, 200, 500, . . . , 5 · 104 and 105.

The sand specimens were prepared by pluviating dry
sand out of a funnel into split moulds. The UGM speci-
mens were prepared by moist tamping in six layers. The
material was placed with the optimum water content (wopt

= 5.2 %, %Pr = 2.30 g/cm3) determined in a Proctor test
with modified energy. A miniature proctor hammer was
used for compaction of the specimens. Its fall weight (m =
1 kg) was dropped from a height of H = 20 cm. N = 250
blows were applied to each layer. The induced energy was
chosen lower than that used in the modified Proctor test
in order to reach densities in the range of 93 - 96 % of %Pr,
which are typical for UGM layers in situ. All UGM speci-
mens were compacted using the same energy (except those
for the tests on the density-influence) in order to induce
the same initial fabric. The large influence of the initial
fabric on the rate of strain accumulation has been demon-
strated for example by Triantafyllidis et al. [29]. In order
to measure volume changes via the pore water, both, the
sand and the UGM specimens were first flushed with CO2

and then saturated with de-aired water. A back pressure
of 200 kPa was used in all tests. The saturation was con-
trolled by Skempton’s B-Value. In all tests B > 0.95 was
achieved.

4.3 Testing program

For both the sand and the UGM four test series were per-
formed. Throughout the tests of each series a single param-
eter (stress amplitude qampl, initial void ratio e0, average
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Fig. 3: Effective stress cycles in the four series of cyclic triaxial
tests performed on each material

mean pressure pav or average stress ratio ηav) was varied
while the remaining were kept constant. The effective stress
paths are shown schematically in the p-q-plane in Fig. 3.
For each stress path, a new specimen was prepared, that
means no multi-stage tests were performed. In the first se-
ries of tests (Fig. 3a) the stress amplitude was varied at a
constant average stress (pav = 200 kPa, ηav = 0.75). In
the second series of tests (Fig. 3b) the initial density was
varied. It is described by the density index

ID0 = (emax − e0)/(emax − emin) (22)

or by the percentage of the Proctor density. The tests on
the influence of density were performed at the same average
stress (pav = 200 kPa, ηav = 0.75). In the third series
(Fig. 3c) different average mean pressures between 50 kPa
and 300 kPa were tested while the average stress ratio was
kept constant at ηav = 0.75. The amplitude-pressure ratio

ζ = qampl/pav (23)

was also kept constant within the series. The fourth series
of tests was performed with constant values of average mean
pressure (pav = 200 kPa) and stress amplitude but with
different average stress ratios (Fig. 3d).

The average and cyclic stresses were chosen in accor-
dance with our recommendations for the determination of
the material constants of the HCA model (Wichtmann et
al. [38]). In most experimental studies on permanent de-
formations in pavements, cycles with an isotropic minimum
stress (qmin = 0) were applied, which is a special case of
the tests shown in Fig. 3d. Such stress paths are also rec-
ommended by the standard code EN 13286-7 [2]. Since
the HCA model is formulated for general stress states, the
stress cycles chosen for the calibration of the material con-
stants are more general than those usually tested in pave-
ment engineering.

Furthermore, in comparison with other studies on UGM
in the literature and in comparison to the recommenda-
tions in EN 13286-7 [2], the stress and strain amplitudes
applied in the present study are relatively low. This is due
to the fact that in typical applications of the HCA model
(e.g. tilting of on-shore and off-shore wind power plants,

settlement of railways of high-speed trains) the strain am-
plitudes usually do not exceed 10−3. The present study
focusses on the application of the HCA model to UGM and
on a comparison of sand and UGM behavior under cyclic
loading. For that purpose similar stress and strain ampli-
tudes as usually used for sand were also chosen for the tests
on the UGM.

After the application of the average stress and a resting
period of 1 hour, the cyclic loading was commenced. Due to
the larger deformations and in order to prevent a build-up
of excess pore water pressure, the first irregular cycle was
applied with a low frequency of one cycle per 100 seconds
(f = 10 mHz). Subsequently, 100,000 regular cycles with a
frequency f = 1 Hz were applied in all tests.

5 Test results
From the measured vertical displacement and volume
change the axial strain ε1 and the volumetric strain εv were
calculated. The lateral strain ε3 and the deviatoric strain εq

were obtained from Eq. (14). From the minimum and max-
imum values during a cycle the residual portion (denoted
by tacc) and the resilient portion (denoted by tampl) of the
strain components were determined. The strain amplitude
and the residual strain are

εampl =

√

(εampl
1 )2 + 2(εampl

3 )2 and (24)

εacc =
√

(εacc
1 )2 + 2(εacc

3 )2 (25)

5.1 Influence of the amplitude
While for the sand eight tests with stress amplitudes 12 kPa
≤ qampl ≤ 80 kPa were performed, the three amplitudes
qampl = 30, 60 and 90 kPa were tested for the UGM.

For sand the strain amplitude εampl decreases during the
first 100 cycles and stays almost constant afterwards [33].
For the UGM a continuous increase of the strain amplitude
during the first 20,000 cycles and approximately constant
values for larger numbers of cycles were observed. Since
the tests were performed drained and a constant pore water
pressure was measured, the increase of the strain amplitude
cannot be attributed to a build-up of pore water pressure.

If a mean value of the strain amplitude over 105 cycles
is plotted versus the stress amplitude, almost linear curves
are obtained for sand. For UGM the strain amplitude in-
creases faster than linear with the stress amplitude. For
both materials, the average values of the strain amplitude
lay in the range between 5 · 10−5 and 4 · 10−4.

Figure 4a contains the curves of the residual strain εacc

as a function of the number of cycles. For the sand the
strain increases proportional to the logarithm of N up to
N ≈ 104 and faster for larger number of cycles. For the
UGM the curves are overlogarithmic between N = 1 and
N = 104 and run almost proportional to ln(N) for larger
numbers of cycles. Therefore, the curves εacc(N) measured
for UGM are similar to those obtained for air-pluviated
specimens of well-graded sands [37].

As obvious from Figure 4a, for both materials the perma-
nent strain increases with increasing stress amplitude. This
is in agreement with test results in the literature (e.g. Youd

[40], Silver & Seed [27, 28], Sawicki & Świdziński [24, 25],
Marr & Christian [15], Duku et al. [6]). In Figure 4b the
residual strain is given as a function of the strain amplitude

5



Wichtmann et al. J. Geot. Geoenv. Eng., Vol. 136, No. 5, pp. 728-740, 2010

100 101 102 103 104 105
0

0.4

0.8

1.2

1.6

2.0

Number of cycles N [-]

all tests:
pav = 200 kPa
ηav = 0.75
ID0 = 0.58 - 0.61

qampl [kPa] = 

80
70
60
51
42
31
22
12

0

0.1

0.2

0.3

0.4

0.5 qampl [kPa]  =

 30
 60
 90

A
cc

um
ul

at
ed

 s
tr

ai
n 

εac
c  [%

]
A

cc
um

ul
at

ed
 s

tr
ai

n 
εac

c  [%
]

Number of cycles N [-]
100 101 102 103 104 105

Sand

all tests:
pav = 200 kPa
ηav = 0.75
ID0 = 1.09 - 1.14
�

d0/ �
Pr = 95.6 - 96.5 %

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0

2

4

6

8

10

12

0 1 2 3 4 5

 N = 100,000
 N = 50,000
 N = 10,000
 N = 1,000
 N = 100
 N = 20

Strain amplitude � ampl [-]

0 1 2 3 4

Strain amplitude � ampl [-]

all tests:
pav = 200 kPa
ηav = 0.75
ID0 = 0.58 - 0.61

� ac
c  / 

f e
 [%

]
 N = 100,000
 N = 50,000
 N = 10,000
 N = 1,000
 N = 100
 N = 20

� ac
c  / 

f e
 [%

]

Sand

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

 80 kPa
 70 kPa
 60 kPa
 51 kPa
 42 kPa
 31 kPa
 22 kPa
 12 kPa

Volumetric strain εacc [%]v

D
ev

ia
to

ric
 s

tr
ai

n 
εac

c  [%
]

q

all tests:
pav = 200 kPa
ηav = 0.75
ID0 = 0.58 - 0.61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Volumetrie strain εacc [%]v

D
ev

ia
to

rie
 s

tr
ai

n 
εac

c  [%
]

q

Sand

UGM

a) b) c)

UGM

qampl [kPa]  =

 30
 60
 90

all tests:
pav = 200 kPa
ηav = 0.75
ID0 = 1.09 - 1.14
�

d0/ �
Pr = 95.6 - 96.5 %

all tests: 
pav = 200 kPa, 
ηav = 0.75
ID0 = 1.09 - 1.14

�
d0/ �

Pr = 95.6 - 96.5 %

UGM

Fig. 4: Tests with different stress amplitudes qampl: a) Accumulation curves εacc(N), b) Permanent strain (divided by the void ratio

function) εacc/f̄e versus strain amplitude ε̄ampl, c) εacc
v -εacc

q strain paths

ε̄ampl. The bar over a symbol indicates that a mean value
up to the number of cycles N has been used:

t̄ampl = 1/N

∫

tampl(N) dN. (26)

On the ordinate the permanent strain has been divided by
the void ratio function f̄e (Table 1) which considers the dif-
ferent initial void ratios e0 and different compaction rates ė.
The bar over fe indicates that a mean value ē is used when
calculating the void ratio function. The function fampl de-
veloped for sand is also suitable to describe the amplitude-
dependence for the UGM. However, the exponent Campl is
significantly different for both materials. A curve-fitting of

f = c (ε̄ampl)Campl (27)

to the data in Figure 4b (the constant c is not used fur-
ther) delivered mean values of Campl of approximately 2.0
for sand but only 1.1 for the UGM. Therefore, the propor-
tionality between the accumulation rate and the square of
the strain amplitude which was observed for various sands
does not apply to the pre-compacted UGM samples.

Figure 4c presents the permanent deviatoric strain εacc
q

as a function of the permanent volumetric strain εacc
v . The

data points correspond to numbers of cycles N = 2, 5, 10,
20, 50, 100, . . . 105. For sand and for UGM the direction
of the εacc

v -εacc
q -strain paths and therefore the direction of

accumulation m in the HCA model does not significantly
depend on the amplitude. However, the directions are dif-
ferent for sand and for UGM which will be further discussed
in Section 5.4.

5.2 Influence of void ratio / density
For the sand nine tests with different initial relative densi-
ties in the range 0.54 ≤ ID0 ≤ 0.99 were performed. The
initial relative densities in the tests on the UGM lay in the
range 0.71 ≤ ID0 ≤ 1.09 which corresponds to dry densi-
ties between 89.4 % and 95.7 % of the Proctor density. The
three specimens with the lower densities were prepared us-
ing a reduced number of blows per layer (50, 100 or 150,
respectively).

In accordance with earlier test results (Silver & Seed
[27, 28], Youd [40], Hain [9], Marr & Christian [15], Duku
et al. [6]) the accumulation rate increases with decreasing
density for both materials (Figure 5a). Figure 5b presents
the residual strain as a function of a mean value of the void
ratio. In order to consider the slight increase of the strain
amplitude with decreasing density, the residual strain has
been divided by the amplitude function f̄ampl of the HCA
model. It was calculated with a mean value ε̄ampl of the
strain amplitude and with constants Campl = 2.0 for sand
and Campl = 1.1 for UGM. For both materials the void-
ratio-dependence of the accumulation rate can be described
by the same function fe. A fitting of

f = c
(Ce − e)2

(1 + e)
(28)

to the data in Figure 5b resulted in material constants Ce

= 0.54 for sand and Ce = 0.07 for UGM.
For sand the direction of accumulation does not depend

on the density (Figure 5c). For UGM the test results are
somewhat ambiguous. Neglecting the test with a density
index ID0 = 0.86 there is a tendency that the accumula-
tion becomes more deviatoric with decreasing density, that
means with decreasing number of blows during specimen
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preparation. However, although looser than the samples
with ID0 = 0.98 and 1.09, the specimen with ID0 = 0.86
shows a less deviatoric accumulation. A possible density-
dependence of the direction of accumulation for the UGM
needs further investigations. It is neglected in the HCA
model for the moment.

5.3 Influence of average mean pressure

For the sand six tests and for the UGM four tests with dif-
ferent average mean pressures in the range 50 kPa ≤ pav ≤
300 kPa were performed. An average stress ratio of ηav =
0.75 and an amplitude ratio of ζ = 0.3 were chosen for both
materials. Due to the constant amplitude ratio, the strain
amplitudes increase with increasing average mean pressure.

For sand the curves εacc(N) for different average mean
pressures coincide for low numbers of cycles (N < 104) and
diverge at larger N -values (Figure 6a). The accumulation
rates increase with decreasing average mean pressure. This
is in accordance with simple shear test results of Duku et
al. [6]. For the UGM the curves εacc(N) for different pres-
sures diverge from the beginning of the tests. Opposite to
the observations for sand, in the tests on UGM the largest
residual strain was obtained for the largest pressure while
the smallest one was observed for the smallest pressure.

The opposite pav-dependence for sand and for UGM be-
comes also clear from Figure 6b where the residual strain
has been divided by the amplitude and by the void ratio
function of the HCA model in order to free the data from
the influences of strain amplitude and void ratio. The data
is plotted versus the average mean pressure. Although the
pressure-dependence is opposite, the barotropy function fp

developed for sand can also be used for the UGM. For UGM

the parameter Cp is negative. The function

f = c exp [−Cp (pav/100− 1)] (29)

has been fitted to the data in Fig. 6b in order to determine
Cp. For sand Cp increases from 0.25 for N = 20 to 0.66 for
N = 105 (see remarks in [34]). A mean value Cp = 0.43
is used in the following. Such an N -dependence was not
observed for the UGM, where an almost constant value of
Cp = −0.22 was found.

Although the directions of the strain paths are different
for sand and for UGM (Figure 6c), for both materials the
direction does not significantly depend on the average mean
pressure.

5.4 Influence of average stress ratio

For sand eleven tests with different average stress ratios in
the range 0.25 ≤ ηav ≤ 1.313 were performed. For UGM
the influence of the stress ratio was studied in four tests
with 0.25 ≤ ηav ≤ 1.5. The average mean pressure was pav

= 200 kPa and the stress amplitude was qampl = 60 kPa in
all tests.

For sand and for UGM the strain amplitude decreases
with increasing average stress ratio. Obviously, for both
materials the accumulation rate increases with increasing
stress ratio (Figure 7a). This becomes also clear from Fig-
ure 7b in which the accumulated strain has been normalized
with the amplitude and the void ratio function of the HCA
model and plotted versus the stress ratio Ȳ av. For both
materials the stress-ratio-dependence can be described by
the same function fY . A curve-fitting of

f = c exp(CY Ȳ av) (30)
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to the data in Fig. 7b resulted in similar mean values of
the material constant CY (2.0 for sand and 1.8 for UGM).
Only a slight variation of CY with the number of cycles was
observed for both materials.

Figure 7c presents the εacc
v -εacc

q strain paths for different
average stress ratios. For sand, the accumulation is pure
volumetric (ε̇acc

q ≈ 0) if the cycles are applied at an isotropic
average stress (ηav = 0). The accumulation becomes more
deviatoric with increasing average stress ratio. A pure de-
viatoric accumulation (ε̇acc

v ≈ 0) takes place at an average
stress lying on the critical state line (CSL, determined from
monotonic shear tests). While for an average stress below
the CSL the cycles cause compaction, a dilative accumula-
tion is observed above the CSL. The test results are in good
accordance with earlier works of Luong [14] and Chang &
Whitman [4].

For UGM, an increase of the deviatoric portion of ac-
cumulation with increasing average stress ratio was also
observed. However, compared to the tests on sand, the ac-
cumulation is pure volumetric at a much larger stress ratio
ηav ≈ 0.5. For a stress ratio ηav = 0.25 negative rates of de-
viatoric strain accumulation were observed. In contrast to
the results for sand, the rate of volumetric strain accumula-
tion did not vanish at a stress ratio ηav = 1.5 which is near
to the stress ratio Mc = 1.55 corresponding to the critical
state line. It should be mentioned that the critical friction
angle ϕc = 38◦ given in Figure 2 was determined from the
inclination of a cone of dry material loosely deposited by
lifting a funnel. This ϕc-value may not be representative for
the pre-compacted UGM samples. Monotonic triaxial tests
on the UGM (Rondon et al. [23]) indicated larger residual
stress ratios Mc ≈ 1.8 at large strains, corresponding to
a friction angle ϕc ≈ 44◦. Possibly, the accumulation be-

comes pure deviatoric at a stress ratio ηav ≈ 1.8. In that
case the assumption of a pure deviatoric accumulation at a
stress ratio ηav = Mc can be maintained for the UGM.

We distinguish between an inherent and an induced
anisotropy. The observed anisotropy of the UGM samples
has been induced during the preparation procedure due to
compaction. An inherent anisotropy may be due to the
grain characteristics, for example caused by flat or elon-
gated grains. Since an isotropic direction of accumulation
has been observed for sand, there is no inherent anisotropy
for the studied sub-angular grain shape.

The isotropic flow rule m used for sand turns out to be
insufficient for the UGM. The test results in the lower dia-
gram of Fig. 7c can hardly be reproduced with an isotropic
flow rule. Therefore, for an application of the HCA model
to the UGM the flow rule has to be generalized in order
to describe anisotropy. This generalization is discussed in
the following. The equations do not distinguish between
an inherent and an induced anisotropy. For that purpose a
second-order anisotropy tensor

a = σ
∗/p (31)

is introduced with σ being a stress for which the flow rule is
assumed purely volumetric, m(a) = ~1. The isotropic flow
rule can be recovered by setting a = 0. For the critical
state the flow rule is purely deviatoric. For an intermediate
stress σ an interpolation is used. Given a, the stress σ is
projected radially onto the deviatoric plane expressed by
p = 1. Next, the projected stress σ/p is decomposed as
follows (Figure 8a):

σ/p = 1 + r = 1 + σ
∗/p (32)
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The so-called conjugated stress t is found from

t = 1 + a + λ(r − a) (33)

It should lie on the critical surface at p = 1 (Figure 8b).
For that purpose the scalar multiplier λ must be determined
from the condition that the conjugated stress t satisfies

tr t tr (t−1) = Yc or tr (t−1) = −Yc/3 (34)

with Yc calculated from Eq. (17). Having found λ the gen-
eralized flow rule is calculated from

m =
1

√

(1 − λ−n)2 + (λ−n)2

[

~1(1 − λ−n) + λ−n(t∗)→
]

(35)

wherein n is an interpolation parameter (a material con-
stant). Linear interpolation is obtained with n = 1.

As an example, the flow rule m for an axisymmetric
stress with diagonal components

σ = diag(σ1, σ3, σ3) (36)

and for a transversal isotropy

a = diag(a,−a/2,−a/2). (37)

is derived. The parameter a and the stress ratio ηiso for
which the accumulation is purely volumetric are interre-
lated via

a = −2/3 ηiso. (38)

Furthermore,

r = diag(r,−r/2,−r/2) with r = −2/3 η (39)

holds. From two solutions of Eq. (34)

λ1|2 =
1

2(a − r)2Yc

[

−9a + 3
(

3r ±
√

(a − r)2(Yc − 9)(Yc − 1)
)

+(2a + 1)(a − r)Yc] (40)

the positive one is chosen as λ. Finally, the strain rate ratio
ω is calculated from

ω =
1 − λ−n

λ−n
or ω = −

1 − λ−n

λ−n
(41)

for triaxial compression and extension, respectively. In
Figure 8c curves ω(ηav) predicted either by Eq. (13) or
by Eq. (41) are compared for a critical friction angle of
ϕc = 30◦ and for an isotropic material (ηiso = 0). Using an
interpolation constant n = 0.9 in Eq. (41), both curves coin-
cide well, except some diverging in the over-critical regime.

In Fig. 8d,e the direction of strain accumulation is shown
by vectors in the p-q-plane. The vectors start at the average
stress of a test and have an inclination of εacc

q /εacc
v towards

the horizontal. The increase of the volumetric portion of
accumulation with the number of cycles, that means the de-
crease of the inclination of the vectors is more pronounced
for the UGM. For sake of simplicity the dependence of m
on the number of cycles has not been implemented into
the HCA model yet. The test data are compared with the
predictions by Eqs. (13) and (41), respectively. For sand,
the direction of accumulation is well approximated by the
isotropic MCC flow rule (Fig. 8d). For ηiso = 0 and n = 0.9
the flow rule defined by Eq. (41) delivers similar vectors in
the p-q-plane (at least in the under-critical regime, Fig. 8d).
The vectors in Fig. 8e were generated using Eq. (41) with
ηiso = 0.5, ϕc = 44◦ and n = 0.9. They reproduce well
the experimentally obtained vectors, especially for larger
numbers of cycles N > 104.
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5.5 Influence of the number of cycles
In Figure 9 all curves εacc(N) of the residual strain versus
the number of cycles have been divided by the functions
f̄ampl, f̄e, fp and fY of the HCA model, in order to study
the pure N -dependence of the accumulation rate. For both
materials the data from the different tests fall together into
a band, the scatter being slightly larger for the UGM.

For the pluviated sand samples, the curves run propor-
tional to the number of cycles in the range N ≤ 104 and
over-proportional for larger N -values. The curves for the
pre-compacted UGM samples are over-logarithmic from the
beginning of a test. In the literature, some researchers
(e.g. Lentz & Baladi [13], Duku et al. [6]) found accumu-
lation curves obeying εacc ∼ ln(N) whereas other studies
(e.g. Marr & Christian [15]) suggested an increase of the
residual strain faster than proportional to the logarithm of
N . In [37] it has been shown that the shape of the curves
εacc(N) depends on the grain size distribution curve. While
uniform sands show curves almost proportional to the num-
ber of cycles, the curvature increases with increasing coef-
ficient of uniformity Cu = d60/d10.

The function fN in Eq. (19) originally developed for sand
describes well also the curves εacc(N) for the UGM. The
fitting of Eq. (19) to the data in Fig. 9 resulted in constants
CN1 = 3.6 · 10−4, CN2 = 0.43 and CN3 = 5.0 · 10−5 for
sand and CN1 = 5.2 · 10−4, CN2 = 0.03 and CN3 = 1.3 ·
10−5 for UGM. For calculations with larger numbers of
load cycles, the applicability of the function fN should be
checked for N > 105. For that purpose long-time tests with
larger numbers of cycles are necessary. For sand, the over-
logarithmic function fN was confirmed in cyclic tests with

N = 2 · 106 cycles [33] and even larger numbers of cycles
will be tested in future.

All constants of the HCA model have been summarized
in Table 1.

6 Recalculation of the laboratory tests
The HCA model and the material constants given in Ta-
ble 1 were used for recalculations of the laboratory tests.
The initial densities, the average stresses and the mea-
sured strain amplitudes were used as input. The imple-
mentation of the HCA model in a Fortran code (user’s
subroutine UMAT for finite element calculations with the
program ABAQUS) in conjunction with a Fortran routine
for the calculation of element tests (so-called ”Incremental
driver”, programmed by A. Niemunis) were used. Figure
10 presents a comparison of the calculated curves εacc(N)
with the experimental data for the sand and for the UGM.
For both materials, most of the curves εacc(N) measured for
different amplitudes, densities, average mean pressures and
average stress ratios are predicted well by the HCA model.
Therefore, with the modifications and material constants
proposed in this paper the HCA model is suitable also for
the prediction of permanent deformations in UGM layers,
at least for the stress and strain levels tested in the present
study.

7 Summary and conclusions
The applicability of a high-cycle accumulation (HCA)
model originally developed for sand for the prediction of
permanent deformations in an unbound granular material
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Fig. 9: Accumulation curves εacc(N) divided by the functions f̄ampl, f̄e, fp and fY : N -dependence of the accumulation rate

(UGM) used for base and subbase layers of pavements
has been inspected. For that purpose cyclic triaxial tests
on pre-compacted specimens of a typical UGM were per-
formed. The results have been compared to those of air-
pluviated sand specimens.

The functions fampl, fe, fp, fY and ḟN , used in the HCA
model for the intensity of accumulation ε̇acc, are suitable
also for UGM, although the material constants differ from
those obtained for sand. An increase of the intensity of
accumulation with increasing strain amplitude, with de-
creasing initial density and with increasing average stress
ratio ηav = qav/pav was observed for both materials. A sig-
nificant difference was found regarding the exponent of the
amplitude-dependence. It is 2.0 for sand but only 1.1 for
UGM. Therefore, the proportionality between the accumu-
lation rate and the square of the strain amplitude (εampl)2

observed for various sands does not apply to the UGM.
The pressure-dependence of the accumulation rate is also
different for UGM and for sand. If cycles with a constant
strain amplitude are applied, the permanent strain accu-
mulation decreases with increasing average mean pressure
pav for sand, while it increases for UGM. Therefore, for
UGM the function fp must be used with a negative value
of the material constant Cp.

The isotropic flow rule used for the direction of accumu-
lation for sand has been found insufficient for the UGM. A
more generalized, anisotropic flow rule is necessary in order
to describe the experimental observation that the accumu-
lation is pure volumetric at an average stress ratio much
larger than zero (ηav ≈ 0.5). Similar to sand, the pure de-
viatoric accumulation is expected at the critical state line.
Equations for a generalized flow rule have been introduced
in the paper.

Recalculations of the laboratory tests with the deter-
mined material constants confirmed a good prediction of
the experimental data by the modified HCA model. There-
fore, the modified HCA model may be a useful tool for
studying more complicated boundary value problems in the
field of pavement engineering, at least for the strain and
stress levels studied in the present study.
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[18] Z. Mróz, V.A. Norris, and O.C. Zienkiewicz. An anisotropic
hardening model for soils and its application to cyclic load-
ing. Int. J. Numer. Anal. Meth. Geomech., 2:203–221, 1978.

[19] A. Niemunis and I. Herle. Hypoplastic model for cohesion-
less soils with elastic strain range. Mechanics of Cohesive-
Frictional Materials, 2:279–299, 1997.

[20] A. Niemunis, T. Wichtmann, and T. Triantafyllidis. A
high-cycle accumulation model for sand. Computers and
Geotechnics, 32(4):245–263, 2005.

[21] R. Pyke, H.B. Seed, and C.K. Chan. Settlement of sands
under multidirectional shaking. Journal of the Geotechnical
Engineering Division, ASCE, 101(GT4):379–398, 1975.

[22] H. A. Rondón and F. A. Reyes. Comportamiento de
materiales granulares en pavimentos flexibles: estado del
conocimiento. Universidad Católica de Colombia y Pontif-
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