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On the ”elastic” stiffness in a high-cycle accumulation model for sand: a

comparison of drained and undrained cyclic triaxial tests

T. Wichtmanni); A. Niemunisii); Th. Triantafyllidisiii)

Abstract

High-cycle accumulation (HCA) models may be used for the prediction of settlements or stress relaxation in soils
due to a large number (N > 103) of cycles with a relative small amplitude (εampl < 10−3). This paper presents a discussion

of the stiffness E used in the basic constitutive equation σ̇
′ = E : (ε̇ − ε̇

acc − ε̇
pl) of a HCA model. E interrelates the

”trends” of stress and strain evolution. For the experimental assessment of the bulk modulus K = u̇/ε̇acc
v the rate u̇ of

pore water pressure accumulation in undrained cyclic triaxial tests and the rate of volumetric strain accumulation ε̇acc
v in

drained cyclic tests have been compared. The pressure-dependent bulk modulus K was quantified from fifteen pairs of
drained and undrained tests with different consolidation pressures and stress amplitudes. It is demonstrated that both the
curves εacc

v (N) in the drained tests and u(N) in the undrained tests are well predicted by the author’s HCA model if the
elastic stiffness is determined in a way described in the present paper. A simplified determination of K from the un- and
reloading curve in an oedometric compression test is discussed.

Key words: High-cycle accumulation model, stiffness E, bulk modulus K, stress relaxation, drained cyclic triaxial tests,
undrained cyclic triaxial tests

1 Introduction

A so-called high- or poly-cyclic loading, that means a load-
ing with a large number of cycles (N > 103) and relative
small strain amplitudes (εampl < 10−3) is of practical rele-
vance for many problems in geotechnical engineering. Ma-
chine foundations are subjected to many small cycles with
constant amplitude. The cyclic loading of the foundations
of tanks, silos and watergates is caused by the changing
height of the filling. Wind and wave loading causes a high-
cyclic loading of the foundations of onshore- and offshore
wind power plants. This loading may be multiaxial since
the directions and frequencies of the wind and wave loading
may be different. This topic is of high actuality for example
in connection with a large number of offshore wind parks
planned in the North Sea. Another example for a high-
cyclic loading are foundations subjected to traffic loading
(e.g. railways of high-speed trains or magnetic levitation
trains). In that case the strain loops in the soil are also
multiaxial due to the moving loads.

A high-cyclic loading may not only cause an accumula-
tion of permanent deformations (e.g. settlements) in the
soil but it may also lead to residual changes of the average
stress. For example, the shaft resistance of a pile in sand
usually decreases with N because the normal stress act-
ing on the shaft relaxates. If the sand is water-saturated
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and the cyclic loading is applied under nearly undrained
conditions, then the pore water pressure accumulates and
the mean effective stress p = tr (σ′)/3 decreases. In the
extreme case the sand ”liquefies” (σ′ = 0).

The finite element (FE) method in combination with a
special ”explicit” (N-type) calculation strategy (Section 2)
and a high-cycle accumulation (HCA) model (Section 3)
may be used to predict permanent deformations or stress
relaxation due to a high-cyclic loading. The method may
be used to solve the problems addressed above involving
a high-cyclic loading. The basic assumption of the HCA
model proposed by Niemunis et al. [4] is that the strain
path and the stress path that result from a high-cyclic load-
ing can be decomposed into an oscillating part and a trend.
The oscillating part is described by the strain amplitude.
The model predicts primarily the trend (accumulation) of
strain ε̇

acc. Depending on the boundary conditions, the cu-
mulative trend can be observed both in the effective stress
(pseudo-relaxation) and in strain (pseudo-creep). These
trends are interrelated by

σ̇
′ = E : (ε̇ − ε̇

acc − ε̇
pl) (1)

with the rate σ̇
′ of the effective stress σ

′ (compression pos-
itive), the strain rate ε̇ (compression positive), the given

accumulation rate ε̇
acc, a plastic strain rate ε̇

pl (for stress
paths touching the yield surface) and an elastic stiffness E.
In the context of HCA models ”rate” means the derivative
with respect to the number of cycles N (instead of time t),
i.e. ṫ = ∂ t /∂N . In this paper the total stress is denoted
by σ = σ

′ + u1 with pore water pressure u. Note that the
index tav for average (= trend) is omitted in this paper.

A large number of drained cyclic element tests [10–14]
has been performed on a medium coarse sand in order to
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develop suitable equations for ε̇
acc in Eq. (1). These equa-

tions are introduced in Section 3. The results from the
axisymmetric tests have been generalized to the full tenso-
rial formulation of the HCA model. For the boundary value
problems (BVPs) studied so far, the deformations were of
essential importance (e.g. FE calculations of settlements
of shallow foundations on dry sand [10]). Less attention
was paid to an appropriate formulation of E, because the
evolution of the trend of stress σ̇

′ was less important in the
applications considered first. However, for some BVPs con-
siderable changes of the average stress are expected (e.g.
piles under cyclic loading). A closer inspection of E be-
comes necessary. It is the objective of the present paper.

At present a simple isotropic stiffness E = λ1 ⊗ 1 + 2µI

is used with the Lamé-constants λ = Eν/(1 + ν)/(1 − 2ν)
and µ = G = E/2/(1 + ν). The identity tensor I is defined
as Iijkl = 1

2 (δikδjl + δilδjk) with Kronecker’s symbol δij .
Therein E is Young’s modulus, G is the shear modulus and
ν is Poisson’s ratio. For Young’s modulus E, a pressure-
dependent expression

E = A (patm)1−n (pav)n (2)

with the atmospheric pressure patm = 100 kPa and two di-
mensionless positive constants A and n is used. Note that
E need not be hyperelastic contrary to the implicit mod-
els for cyclic loading because it interrelates accumulation
trends and not stress and strain rates. The magnitude of
E has been roughly estimated.

No systematic experimental study of E in Eq. (1) can be
found in the literature either. Some information about the
magnitude of E can be found in the paper of Sawicki [6]. He
studied pore pressure accumulation and liquefaction phe-
nomena at the Izmit Bay coastal area (Turkey) during the
strong earthquake in August 1999. Sawicki used bulk mod-
uli K between 145 and 156 MPa in his compaction model
(for its critical review see [10]). These values were obtained
from the un- and reloading curves in oedometric tests. Saw-
icki assumed that these values can be used for the ”elastic”
stiffness in HCA models. Although being plausible, no ex-
perimental evidence has been provided for this assumption
yet.

Assuming an isotropic E, the following questions may be
posed:

• Which values of ν and E are adequate?

• Is E strongly pressure-dependent?

• Does E depend on amplitude and void ratio?

• For a simplified procedure, can E be determined from
the un- and re-loading curve of an oedometric test or
is it similar to a small-strain stiffness (i.e. attainable
from a resonant column test or from wave velocity mea-
surements)?

The present paper concentrates on K which influences the
rate of stress relaxation. Based on the results of 15 pairs of
drained and undrained cyclic tests performed on a medium
coarse sand the magnitude and the pressure-dependence of
K will be discussed. It will be shown that K is slightly
amplitude-dependent within the range of amplitudes stud-
ied herein.

2 ”Explicit” calculation strategy

For predictions of permanent deformations or stress relax-
ation due to cyclic loading by means of the finite element
(FE) method, a conventional pure implicit calculation with
a σ̇

′-ε̇ constitutive model (e.g. elastoplastic multi-surface
models, endochronic models or hypoplastic models) is suit-
able only for small numbers of cycles (N < 50). For large
N -values the numerical error becomes excessive in such cal-
culations (Niemunis et al. [4]).

For a high-cyclic loading another strategy of calculation
is necessary. It is illustrated in Fig. 1 for the case of a shal-
low foundation under cyclic loading. Only a few cycles are
calculated implicitly with small increments σ̇

′(ε̇)∆t using
a σ̇

′-ε̇ constitutive model. Larger packages of cycles in be-
tween are treated explicitly. The explicit mode requires a
special constitutive formulation (HCA model) which takes
packages of cycles ∆N as input. The accumulation of resid-
ual strain ε̇

acc∆N due to a package of ∆N cycles of a given
strain amplitude εampl is treated similarly as a creep defor-
mation due to time increments ∆t in viscoplastic models.
The number of cycles N just replaces the time t. Without
tracing the oscillating strain path during the individual cy-
cles, the explicit mode calculates directly the accumulation
rate ε̇

acc which enters the constitutive equation (1).
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Fig. 1: FE calculation of the settlements of a shallow founda-
tion under cyclic loading using a combined implicit and explicit
calculation

The implicit parts of the calculation are necessary in or-
der to determine or correct the spatial field of the strain
amplitude εampl. The strain amplitude is an important in-
put parameter of the HCA model (Section 3). The first
cycle may be irregular since the deformations in the first
cycle can significantly differ from those in the subsequent
cycles (e.g. for a freshly pluviated sand). Therefore the
second cycle is used for the determination of εampl. The
strain amplitude is determined from the strain path ε(t)
recorded in each integration point during the second cy-
cle. The procedure described by Niemunis [2] is applied.
During the explicit parts of the calculation the strain am-
plitude εampl is assumed constant. After several thousand
cycles the spatial field of the real strain amplitude may
have changed due to a compaction and a re-distribution of
stress. The explicit calculation should be therefore inter-
rupted and εampl should be recalculated implicitly (control
cycles, Fig. 1).
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3 HCA model

For ε̇
acc in Eq. (1) the HCA model proposed by the authors

(Niemunis et al. [4]) uses

ε̇
acc = ε̇acc m (3)

with the ”direction” of strain accumulation m =
ε̇
acc/‖ε̇acc‖ (flow rule, unit tensor) and the intensity ε̇acc =

‖ε̇acc‖. The flow rule of the modified Cam clay (MCC)
model

m =

[

1

3

(

p − q2

M2p

)

1 +
3

M2
σ

′∗

]→

(4)

approximates well the ratios ε̇acc
v /ε̇acc

q measured in drained
cyclic triaxial tests and has been adopted in the HCA
model. For the triaxial case the Roscoe’s stress invariants
are p = (σ′

1 +2σ′

3)/3 and q = σ′

1 −σ′

3 with σ′

1 and σ′

3 being
the axial and lateral effective stress components, respec-
tively. The strain invariants are εv = ε1 + 2ε3 (volumetric
strain) and εq = 2/3(ε1−ε3) (deviatoric strain). For triax-
ial extension η = q/p < 0 a small modification M = F Mc

is used in Eq. (4) to make it consistent with the Coulomb
criterion:

F =







1 + Me/3 for η ≤ Me

1 + η/3 for Me < η < 0
1 for η ≥ 0

(5)

wherein

Mc =
6 sinϕc

3 − sin ϕc

and Me = − 6 sin ϕc

3 + sinϕc

. (6)

In Eq. (4), t→ denotes Euclidean normalization and σ
′∗ is

the deviatoric part of the effective stress.
The intensity of strain accumulation ε̇acc in Eq. (3) is

calculated as a product of six functions:

ε̇acc = fampl ḟN fe fp fY fπ (7)

Each function (Table 1) takes into account a different influ-
encing parameter. The function fampl describes the depen-
dence of ε̇acc on the strain amplitude εampl. Actually the
model incorporates a tensorial definition of the amplitude
for multidimensional strain loops [4]. It is applicable to
convex (e.g. elliptical) six-dimensional strain loops. Here
we use the scalar measure εampl of this tensorial ampli-
tude only. A procedure to handle arbitrary six-dimensional
strain loops using a spectral analysis has been proposed by
Niemunis et al. [5]. The stress-dependence (the increase of
ε̇acc with decreasing average mean pressure pav and with
increasing average stress ratio ηav = qav/pav) is captured
by the functions fp and fY while fe increases ε̇acc with in-

creasing void ratio e. The function ḟN = ḟA
N + ḟB

N (see Ta-
ble 1) describes the dependence of ε̇acc on cyclic preloading
(historiotropy, fabric effects). The model counts the cycles
weighting their number with the amplitude. Such cyclic
preloading is quantified by

gA =

∫

fampl ḟ A
N dN (8)

and used in ḟN . For a constant amplitude the HCA model
predicts accumulation curves εacc(N) proportional to fN =
CN1[ln(1+CN2N)+CN3N ]. Physically gA can be seen as a

Function HCA model constants for Nmax =

105 200

fampl = min











(

εampl

ε
ampl
ref

)Campl

100

ε
ampl
ref

10−4

Campl 2.0 1.5

ḟN = ḟA
N + ḟB

N CN1 3.6 · 10−4 1.97 · 10−4

ḟA
N = CN1CN2 exp

[

−

gA

CN1fampl

]

CN2 0.43 0.24

ḟB
N = CN1CN3 CN3 5.0 · 10−5 3.5 · 10−3

fp = exp

[

−Cp

(

pav

pref
− 1

)]

Cp 0.43 0.025

pref 100 kPa

fY = exp
(

CY Ȳ av
)

CY 2.0

fe =
(Ce − e)2

1 + e

1 + eref
(Ce − eref)

2
Ce 0.54

eref 0.874

Table 1: Summary of the functions, reference quantities and
constants of the HCA model for a medium coarse sand; the
constants for Nmax = 105 were taken from [11], the constants
for Nmax = 200 were derived in this study, Section 6

measure of the arrangement of grains rendering sand more
resistant against cyclic loading. The function fπ increases
the accumulation rate due to changes of the polarization,
see [4]. This function is not further used here since only
tests with a constant polarization have been performed (i.e.
fπ = 1 holds). The constants of the HCA model for a
medium coarse sand determined from drained tests with
Nmax = 105 cycles are summarized in the third column of
Table 1.

The multiplicative approach for ε̇acc in Eq. (7) was cho-
sen heuristically and then to some extent confirmed experi-
mentally [10,11,13]. For example, fampl was found valid for
two different average stresses, one with triaxial compression
(pav = 200 kPa, ηav = 0.75) and the other one with triaxial
extension (pav = 200 kPa, ηav = -0.5). The function fY

was confirmed for different average mean pressures 50 kPa
≤ pav ≤ 300 kPa and the function fp was found valid for
different average stress ratios −0.5 ≤ ηav ≤ 1.313, although
the constants Cp and CY may slightly vary.

For axisymmetric element tests it is convenient to rewrite
Eq. (1) with Roscoe’s invariants:





ṗ

q̇



 =





K 0

0 3G









ε̇v − ε̇acc mv

ε̇q − ε̇acc mq



 (9)

Omitting ε̇
pl in Eq. (1) is legitimate for homogeneous stress

fields. The bulk modulus K = E
3(1−2ν) and shear modulus

G = E
2(1+ν) are expected to be pressure-dependent. The

volumetric (mv) and the deviatoric (mq) portions of the
flow rule are:





mv

mq



 = 1
√

1

3

(

p−
q2

M2p

)

2

+6( q

M2 )2







p − q2

M2p

2
q

M2






(10)

In a drained test with stress-controlled cycles, Eq. (10) cor-
responds to the ratio of the rates of volumetric and devi-
atoric strain predicted by the well-known formula of the

3



Wichtmann et al. Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 791-805, 2010

MCC model:

ε̇acc
v

ε̇acc
q

=
mv

mq

=
M2 − (ηav)2

2ηav
. (11)

4 Determination of elastic constants

The bulk modulus K can be experimentally obtained from
a comparison of the rate u̇ of pore pressure accumulation
in an undrained cyclic triaxial test and the rate ε̇v of vol-
umetric strain accumulation in a drained cyclic test with
similar initial stress and initial void ratio and with the same
cyclic loading. For an isotropic stress (q = 0, q̇ = 0, mq =
0) Eq. (9) takes either the form of isotropic relaxation (see
the average effective stress path in Fig. 2a)

ṗ = −K ε̇acc mv (12)

under undrained conditions (ε̇v = 0) or the form of volu-
metric creep

ε̇v = ε̇acc mv (13)

under drained conditions (ṗ = 0). Comparing these equa-
tions one may eliminate ε̇acc mv and obtain

K = − ṗ

ε̇v

or
u̇

ε̇v

(14)

For a determination of Poisson’s ratio ν the effective stress
evolution (ṗ,q̇) observed in a strain-controlled undrained
cyclic triaxial test commenced at an anisotropic initial
stress may be compared with the prediction of Eq. (9). For
ε̇v = 0 and ε̇1 = 0 and therefore ε̇q = 0 one obtains:





ṗ

q̇



 =





K 0

0 3G









−ε̇acc mv

−ε̇acc mq



 (15)

The ratio of the relaxation rates

q̇

ṗ
=

3G

K

mq

mv

=
9(1 − 2ν)

2(1 + ν)

2ηav

M2 − (ηav)2
(16)

depends on ν. Stress paths for different ν-values are plotted
exemplary in Fig. 2b. The stress relaxates until σ

′ = 0
is reached. Note that the deviatoric relaxation q̇ rapidly
increases with stress ratio η = q/p. The Poisson’s ratio ν
can be determined from the measured q̇/ṗ or judged by a
curve-fitting of the experimental data using Fig. 2b.

5 Tested material, test device, specimen prepara-
tion procedure and testing program

The drained and the undrained cyclic tests were performed
on a medium coarse quartz sand with subangular grain
shape. The mean grain size and the coefficient of uniformity
are d50 = 0.55 mm and Cu = d60/d10 = 1.8, respectively.
The grain size distribution curve is given for example in [10]
(denoted as ”Sand No. 3”). The minimum and maximum
void ratios emin = 0.577 and emax = 0.874 have been deter-
mined according to German standard code DIN 18126.

A scheme of the test device is shown in Fig. 3. The ax-
ial load was applied with a pneumatic loading system. It
was measured with a load cell located below the specimen
base pedestal. Axial deformations of the specimen were
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Fig. 2: Schematic illustration of the trend of effective stress σ
′

in undrained cyclic triaxial tests with a) stress control and b)
strain control

measured with a displacement transducer mounted to the
load piston. Volume changes were determined via the pore
water using a pipette system in combination with a differ-
ential pressure transducer. Two pressure transducers were
used to monitor pore and cell pressure. All signals were
continuously recorded with a data acquisition system.
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Fig. 3: Scheme of the cyclic triaxial device used for the present
study

Specimens were prepared by pluviating dry sand out of
a funnel through air into split moulds. An initial relative
density of ID0 = (emax − e)/(emax − emin) ≈ 0.6 was in-
tended in all tests. After having mounted the pressure cell
the specimens were flushed with carbon dioxide and af-
terwards saturated with de-aired water. A back pressure
of 200 kPa was applied in all tests. The quality of sat-
uration was checked by determining Skempton’s B-value.
B > 0.97 was achieved for all specimens. Subsequently the
effective stress was increased isotropically to the intended
initial value of the test. After a short resting period of 30
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minutes the cyclic axial loading was applied using a tri-
angular load pattern. The cell pressure was kept constant
during the cycles.

In all tests (drained and undrained) the first cycle was
applied under the drained condition. The first cycle may
be irregular and may generate much more deformation than
the subsequent ones. The HCA model predicts only the ac-
cumulation due to the subsequent regular cycles (see Figure
1). In numerical calculations with the HCA model the first
cycle is calculated using a conventional implicit constiti-
tutive model (we use for example hypoplasticity with in-
tergranular strain [3,9]). Since the initial conditions at the
beginning of the regular cycles (initial stress and initial rela-
tive density) were intended to be similar in the drained and
in the undrained tests, the first cycle was applied drained
in both types of tests. In the undrained tests the drainage
was closed after the first cycle and all subsequent cycles
were applied undrained. The time period of a cycle was
T = 100 s. The first cycle is not included in the follow-
ing evaluation of the ”elastic” stiffness E. In all diagrams
N = 1 refers to the first regular cycle.

In the undrained tests five different initial effective pres-
sures p0 = 50, 100, 150, 200 or 300 kPa were used. The
same values were used for the average mean pressure pav in
the drained tests. For each pressure three tests with differ-
ent amplitude-pressure ratios ζ = qampl/p0 (or qampl/pav)
= 0.2, 0.3 and 0.4 were conducted, that means a total num-
ber of 15 undrained and 15 corresponding drained cyclic
tests were performed. The testing program is summarized
in Table 2.

Most of the undrained cyclic tests were stopped when a
certain amount of excess pore water pressure was reached
keeping the effective stress far away from the failure line
(known from undrained monotonic tests [15]). In some
tests, however, the undrained cyclic loading was contin-
ued until the stress path reached the failure line or even
σ

′ = 0, that means after the stress path had reached the
first loop of ”cyclic mobility”. Undrained tests with sev-
eral such cyclic mobility loops on the same sand have been
reported by Wichtmann et al. [15]. The maximum number
of cycles in the drained tests was chosen similar to that
applied in the corresponding undrained test.

6 Results of drained and undrained cyclic tests

In the undrained stress-controlled tests the accumulation
of pore water pressure u was accompanied by the decrease
of the effective axial and lateral stresses σ′

1 and σ′

3 (see
a typical test result in Fig. 4). For qampl = constant the

amplitude of axial strain εampl
1 gradually increased with N

due to the decrease of p and the pressure-dependence of

the secant stiffness (Fig. 5). The rapid increase of εampl
1

at t ≈ 2,700 s corresponds to the ”initial liquefaction” (i.e.
u/σ3 = 1 was reached for the first time). In accordance
with the flow rule in Eq. (4) the accumulation is almost
perfectly isotropic that means ε̇acc

q ≈ 0 for q = 0.
The effective stress paths of all 15 undrained cyclic tests

are given in Fig. 6. Fig. 7 presents the corresponding pore
water pressures u(t) and the trends of pore water pressure
u(N) (i.e. the residual values after each cycle at q = 0) for
different p0- and ζ = qampl/p0-values. For a certain value
of p0, the rate of pore water pressure accumulation u̇ con-
siderably increases with increasing stress amplitude qampl.

Test Undrained Drained

pair p0 qampl ζ ID0 e0 ID0 e0

No. [kPa] [kPa] [-] [-] [-] [-] [-]

1 50 10 0.2 0.59 0.701 0.59 0.700

2 50 15 0.3 0.59 0.700 0.61 0.692

3 50 20 0.4 0.57 0.705 0.58 0.703

4 100 20 0.2 0.61 0.693 0.61 0.694

5 100 30 0.3 0.59 0.699 0.59 0.700

6 100 40 0.4 0.60 0.696 0.60 0.695

7 150 30 0.2 0.59 0.698 0.61 0.694

8 150 45 0.3 0.61 0.693 0.61 0.693

9 150 60 0.4 0.60 0.696 0.60 0.697

10 200 40 0.2 0.62 0.690 0.60 0.697

11 200 60 0.3 0.59 0.699 0.63 0.688

12 200 80 0.4 0.64 0.685 0.61 0.694

13 300 60 0.2 0.61 0.693 0.63 0.686

14 300 90 0.3 0.63 0.687 0.62 0.690

15 300 120 0.4 0.62 0.692 0.62 0.690

Table 2: Testing program: consolidation pressure p0, stress am-

plitude qampl, amplitude-pressure ratio ζ = qampl/p0, initial
relative density ID0 and initial void ratio e0 (all tests: q0 = 0)
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Fig. 4: Stresses σ3(t), u(t), σ′

1(t) and σ′

3(t) versus time in an
undrained test with p0 = 100 kPa, q0 = 0 and ζ = 0.3 (Test
No. 5 in Table 2)
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Fig. 5: Axial strain ε1(t) versus time in an undrained test with
p0 = 100 kPa, q0 = 0 and ζ = 0.3 (Test No. 5 in Table 2)

The relaxation of the effective mean stress p is accompanied

by an increase of the strain amplitude εampl =
√

3/2 εampl
1

(Fig. 7).
The measured accumulation of strain during stress cy-

cles in drained tests is almost perfectly isotropic (ε̇acc
q ≈ 0,

ε̇acc
v 6= 0, see a typical result in Fig. 8), which is in ac-

cordance with the flow rule Eq. (4). Analogous results for
different pav- and ζ-values are given in Fig. 9 as a strain
path εv(t) and as a trend εacc

v (N). For a constant pav, the
creep rate ε̇acc

v increases with the stress amplitude qampl.
The strain amplitude εampl moderately decreased during
the first cycles, especially for the larger amplitude-pressure
ratios (Fig. 9).
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Fig. 8: Volumetric strain εv(t) and deviatoric strain εq(t) versus
time in a drained test with pav = 100 kPa, qav = 0 and ζ = 0.3
(Test No. 5 in Table 2)

7 Evaluation of bulk modulus K = u̇/ε̇acc

v

For each pair of drained and undrained cyclic tests the
bulk modulus K was calculated from Eq. (14). The rates
u̇ and ε̇acc

v were calculated from the trend curves u(N) and
εacc

v (N) given in Figs. 7 and 9.
During an undrained cyclic test with qampl = constant

the average mean pressure decreases and the strain am-

plitude εampl increases considerably due to the pressure-
dependence of the secant stiffness. In the drained test pav

is constant and the strain amplitude does not change much,
but the void ratio e decreases with N which affects the rate
of accumulation via fe (Table 1). In order to evaluate u̇
and ε̇acc

v for exactly the same test conditions that means
same values of εampl, e, pav and N (strictly speaking gA,
Eq. (8)), the rate ε̇acc

v from the drained tests was corrected
by a factor fc consisting of four multipliers:

fc =
fUD
ampl

fD
ampl

fUD
e

fD
e

fUD
p

fD
p

ḟUD
N

ḟD
N

(17)

with the functions fampl, fe, fp and ḟN given in Table 1.
The indices tUD and tD indicate the undrained or drained
test, respectively.

In [11] it has been demonstrated that the dependence of
the intensity of accumulation ε̇acc on the average mean pres-
sure pav becomes more pronounced with increasing number
of cycles (i.e. the parameter Cp in fp increases with N). In
many test pairs performed for the present study the number
of cycles did not exceed N = 50 (due to the fast accumu-
lation of pore water pressure in the undrained test). In
none of the tests the maximum number of cycles was larger
than 1,000. In order to improve the accuracy of fc, based
on the data from the 15 drained tests the parameters of
the functions fampl, fp and ḟN were determined. The void
ratio function fe could not be inspected since the initial
void ratio did not differ significantly in the present test se-
ries. Thus, Ce = 0.54 obtained from another test series
with N = 105 cycles [11] had to be applied in the present
analysis.

The residual volumetric strain εacc
v after N = 10 or 20

cycles, respectively, increases over-proportionally with the
strain amplitude, Figure 10a. On the abscissa a mean value
of the strain amplitude ε̄ampl = 1/N

∫

εampl(N) dN is used.
In order to consider the slightly different initial void ratios
e0 and different compaction rates ė = ∂e/∂N , on the ordi-
nate the residual volumetric strain has been divided by the
void ratio function f̄e. It has been calculated with a mean
value of the void ratio ē = 1/N

∫

e(N) dN . The exponent

Campl = 1.5 of the relationship ε̇acc ∼ (εampl)Campl (func-
tion fampl, Table 1) is lower than Campl = 2.0 observed
in tests with ηav = 0.75 for various sands and various N -
values [14].

The pressure-dependence of the accumulation rate is
quite low at low N -values, Fig. 10b. Note that the HCA
model disregards the N -dependence of fp for the sake of
simplicity. In Fig. 10b, the data has been divided by f̄ampl

and f̄e in order to remove the influences of strain amplitude
and void ratio. A mean value Cp = 0.025 has been used
in the function fp for calculating the correction factor in
Eq. (17).

The ”distilled” accumulation curves
εacc

v (N)/(f̄amplf̄efpfY ) with fY = 1 from the 15
drained tests can be approximated by the func-
tion

√
3 fN =

√
3 CN1[ln(1 + CN2N) + CN3N ] with

CN1 = 1.97 · 10−4, CN2 = 0.24 and CN3 = 3.51 · 10−3,
Figure 10c. All constants of the HCA model derived from
the data of the present study are summarized in the fourth
column of Table 1.

The data from the undrained tests has to be corrected
because of membrane penetration effects (system compli-
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Fig. 7: Results of the 15 undrained cyclic tests: Left: Development of pore water pressure u with time t, Middle: Residual value of

u as a function of the number of cycles N , Right: Strain amplitude εampl as a function of the number of cycles N
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Fig. 9: Results of the 15 drained cyclic tests: Left: Development of volumetric strain εv with time t, Middle: Residual strain εacc
v as

a function of the number of cycles N , Right: Strain amplitude εampl as a function of the number of cycles N
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Fig. 10: Residual volumetric strain εacc
v measured in the 15

drained cyclic tests a) normalized by the void ratio function f̄e

and plotted versus strain amplitude ε̄ampl, b) normalized by f̄e

and by the amplitude function f̄ampl versus average mean pres-

sure pav, c) normalized by f̄e, f̄ampl and by the stress functions
fp and fY versus number of cycles N

ance). The increase of pore water pressure due to cyclic
loading and the accompanying decrease of the effective lat-
eral stress σ′

3 lead to a reduction of the penetration of the
rubber membrane into the voids at the boundary of the
specimen. This implies a slight increase of the volume of
the specimen (i.e. ∆V 6= 0) and thus a slower accumula-
tion of the pore water pressure (for a detailed discussion
consult Nicholson et al. [1] or Sivathayalan & Vaid [7]). In
the present study a correction method proposed by Toki-
matsu [8] has been used, Fig. 11. In order to obtain the
true material response, that means data free from mem-
brane penetration effects, the N -axis is scaled by a factor
1/CN with

CN = exp(1.77 CR) and CR =
B

3 uampl

qampl

(18)

(derived from Fig. 10 in [8]) with CR and B being the sys-
tem compliance ratio and Skempton’s B-value, respectively.
The ratio uampl/qampl of the amplitudes of pore water pres-
sure and deviatoric stress amplitude is obtained from the
middle stage of an undrained test. An analysis of the data
of the 15 undrained tests performed in the present study
delivered a mean value CN = 1.30. Before evaluating K ac-
cording to Eq. (14) the curves u(N) of all undrained tests
have been scaled by 1/CN .

NN/cN

Excess pore water 

pressure ratio ∆u/p0

1

0
Number of cycles N

corrected data,

without system compliance,

true material response

measured data, falsified 

by system compliance

Fig. 11: Correction of the measured trend u(N) of pore water
pressure with respect to membrane penetration effects (system
compliance), method proposed by Tokimatsu [8]

The bulk modulus K was determined over the range of
∆u = 10 kPa. Data for which one of the four multipliers
in Eq. (17) was larger than 2.0 or for which the strain am-
plitude exceeded εampl = 10−3 were omitted. Only small
strain amplitudes εampl ≤ 10−3 were accepted for the eval-
uation of K due to limitations in the HCA model [4, 10].

Fig. 12 presents the bulk modulus K versus average
mean pressure pav. The data from all 15 pairs of tests
fall into a concentrated cloud of points, although especially
the data for the small amplitudes (ζ = 0.2) show some
scatter. The obvious pressure-dependence of K can be ap-
proximated by

K = A p1−n
atm pn (19)

with A = 467 and n = 0.46 (the fat solid line in Fig. 12).
In the recalculations of the undrained cyclic tests presented
in the next section also a constant bulk modulus K = 54.9
MPa (corresponding to A = 549 and n = 0 in Eq. (19), see
the fat dashed line in Fig. 12) and a linear relationship (A
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= 331 and n = 1, see the fat dot-dashed line in Fig. 12)
were tried out. The constant bulk modulus is the mean
value of all data in Fig. 12.

The data for the large amplitude-pressure ratio ζ = 0.4
lay at the upper boundary of the cloud of data in Fig. 12
while the data for ζ = 0.2 are located at the lower bound-
ary. However, this slight amplitude-dependence may be
neglected for practical purpose.

The data in Figure 12 gives no evidence that K de-
pends on cyclic preloading (i.e. on the number of cycles
N). Hence, a conclusion of an earlier publication has to be
revised. In [16] the data from drained and undrained cyclic
tests has been analyzed using the constants in the third col-
umn of Table 1 (i.e. the constants determined from tests
with a large number of cycles) and no correction for mem-
brane penetration effects was applied.

8 Numerical simulation of element tests with the
HCA model

The good approximation of the experimental data from the
drained tests by the HCA model with the constants in the
fourth column of Table 1 is demonstrated in the middle
column of diagrams in Fig. 9 where the predicted trend
curves εacc

v (N) have been added (solid lines). The initial
void ratios and the measured curves of the strain amplitude
εampl(N) were used as an input for the recalculations. De-
spite some deviations for pav = 50 kPa and for amplitude-
pressure ratios of ζ = 0.2 and 0.3, the measured and the
predicted curves agree well.

The undrained cyclic tests have been recalculated us-
ing the HCA model with K obtained from Eq. (19) and
with the constants given in the fourth column of Table
1. The initial void ratios and the measured curves of the
strain amplitude εampl(N) were used as an input. In con-
trast to the experimental data the curves u(N) predicted
by the HCA model are free from membrane penetration
effects. Therefore, for comparison purpose the N -axis has
been scaled by a factor 1.3 (therefore the predicted curves
start at N = 1.3).

Three different pairs of constants A and n in Eq. (19)
were tried out. The constants A = 467 and n = 0.46
approximate well the pressure-dependence of the data in
Fig. 12. Using these constants, the trend u(N) predicted
by the HCA model agrees quite well with the experimental
data (see the middle column of diagrams in Fig. 7), except
a large deviation in case of the test with p0 = 50 kPa and
ζ = 0.2. The surprisingly low accumulation of pore water
pressure in the test with pav = 50 kPa and ζ = 0.2 may be
due to preloading or aging effects since an effective stress
of 50 kPa was also applied during the specimen prepara-
tion procedure. While these effects may not influence the
accumulation at larger amplitudes and pressures, they may
have reduced the rates u̇ for the small amplitude-pressure
ratio ζ = 0.2.

For FE calculations a constant bulk modulus (A = 549
and n = 0) or a linear relationship (A = 331 and n = 1)
would be advantageous for numerical reasons. The constant
value overestimates the bulk modulus at small pressures
and underestimates it at large pressures (Fig. 12). For a
linear approximation of K(p) it is the other way around.
Consequently, the dashed curves u(N) in Fig. 7 reveal that
a constant bulk modulus overestimates the accumulation of

pore water pressure in the tests with small initial pressures
(p0 = 50 and 100 kPa) while the rate u̇ is underestimated
in the tests with a large initial pressure (p0 = 300 kPa).
The usage of a linear relationship for K(p) results in an
underestimation of the pore water pressure accumulation in
the tests with initial pressures p0 = 50 and 100 kPa while
the prediction is still acceptable for p0 = 300 kPa (dot-
dashed curves in Fig. 7). For intermediate initial pressures
(p0 = 150 and 200 kPa) all three sets of constants for A and
n deliver similar bulk moduli and thus approximate well the
measured data. However, based on the predicted curves
u(N) in Fig. 7 it can be stated that for FE calculations
involving poor drainage conditions the usage of a constant
or a linear function for K(p) seems to be over-simplified.

It can be concluded that the HCA model with a single set
of constants (fourth column of Table 1) in combination with
the pressure-dependent bulk modulus derived in the present
study (Eq. (19) with A = 467 and n = 0.46) describes well
both, the accumulation of pore water pressure in undrained
cyclic tests and the accumulation of volumetric strain in
drained cyclic tests.

9 Simplified determination of K

Judging by the presented test results a proper determi-
nation of K(p) requires at least two pairs of drained and
undrained cyclic tests with different initial effective mean
pressures (e.g. p0 = 100 and 300 kPa). The tests could
be performed for example with an intermediate amplitude-
pressure ratio of ζ = 0.3. For coarse-grained sands mem-
brane penetration effects may become considerable (accord-
ing to Nicholson et al. [1] they increase over-proportionally
with the grain size d20) and the procedure discussed above
may not be sufficiently accurate. Alternatively to this cali-
bration a simplified procedure has been studied. The mod-
ulus K is estimated from oedometric or resonant column
test data.

Two tests with oedometric compression (specimen di-
ameter d = 10 cm, height h = 3.5 cm) were performed on
dry sand. The initial relative density ID0 was 0.63 in both
tests. The maximum axial stress was σ1 = 2 MPa. A single
un- and reloading cycle was performed. The evolution of
void ratio e in the tests is given in Figure 13. The bulk
modulus was estimated from the constrained elastic mod-
ulus M = ∆σ1/∆ε1 using the relationship K = 1+ν

3(1−ν)M .

Curves K(p) for two different values of Poisson’s ratio (ν
= 0.2 and ν = 0.25, respectively) have been added to Fig-
ure 12 (narrow dashed curves). They represent mean val-
ues of the two performed tests. In order to calculate p,
the lateral stress in the oedometric tests was estimated
from σ3 = K0σ1 using Jaky’s formula K0 = 1 − sin ϕc

with the critical friction angle ϕc = 31.2◦ which was deter-
mined from a pluviated cone of sand. Figure 12 reveals that
the bulk modulus from the comparison of the drained and
undrained cyclic tests agrees quite well with the bulk modu-
lus obtained from the oedometric compression tests during
un- and reloading. This seems to be quite reasonable since
an increase of the pore water pressure and the accompa-
nying decrease of the effective mean pressure corresponds
to an elastic unloading. Hence, the approach of Sawicki [6]
could be confirmed. Therefore, a simplified procedure us-
ing merely the un- and reloading curve in an oedometric
compression test provides a sufficiently exact estimate of
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An estimation of K based on the small-strain shear mod-
ulus Gmax measured at very small shear strain amplitudes
γampl < 10−6 in resonant column (RC) tests turned out to
be less suitable. The RC tests were performed with cylin-
drical specimens of dry sand (diameter 10 cm, height 20
cm). The test device is of the ”free-free”-type meaning
both the top and the base mass are freely rotatable [17].
Gmax increases with pressure and decreases with void ratio
(Figure 14). The small-strain bulk modulus was estimated

from Kmax = 2(1+ν)
3(1−2ν) Gmax. Curves Kmax(p) obtained from

a test with ID0 = 0.57 and for ν = 0.2 and ν = 0.25,
respectively, have been added to Figure 12 (narrow dot-
dashed curves). Kmax from the RC test data is approxi-
mately three times larger than K = u̇/ε̇acc

v obtained from
the comparison of the drained and undrained cyclic tests.
The use of a small-strain stiffness for E in a HCA model
would significantly overpredict stress relaxation. Resonant
column tests are therefore not appropriate for a simplified
determination of K = u̇/ε̇acc

v .
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10 Summary, conclusions and outlook

The paper presents an evaluation of the ”elastic” stiffness
E in the basic equation σ̇

′ = E : (ε̇ − ε̇
acc − ε̇

pl) of a high-
cycle accumulation (HCA) model [4]. The bulk modulus K
used in E was evaluated from a comparison of the rate of
volumetric creep ε̇acc

v and the rate of pore water pressure
accumulation u̇ (stress relaxation) in 15 pairs of drained
and undrained cyclic triaxial tests with similar isotropic
initial pressures, similar void ratios and deviatoric stress
amplitudes. The experiments show that K is pressure-
dependent and that it can be approximated by Eq. (19)
with constants A = 467 and n = 0.46. The usage of a
constant bulk modulus or a linear relationship for K(p)
would be over-simplified. K seems not to depend on cyclic
preloading. The small amplitude-dependence can be ne-
glected for practical purpose as it has been done in the
HCA model. For a simplified procedure, K can be esti-
mated from the un- and reloading curve in an oedometric
compression test. The use of a small-strain stiffness for E

would significantly overpredict stress relaxation. Recalcu-
lations of the experimental data confirmed that the HCA
model [4] with a single set of constants in combination with
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the bulk modulus K given by Eq. (19) describes well both,
the accumulation of pore water pressure in undrained cyclic
tests and the accumulation of volumetric strain in drained
cyclic tests.

In future, the void-ratio dependence of K will be stud-
ied and an appropriate extension of Eq. (19) will be pro-
posed if necessary. The minor amplitude-dependence ob-
served in the experiments needs further inspection. Pois-
son’s ratio ν can be evaluated from displacement-controlled
undrained cyclic triaxial tests with anisotropic initial
stresses (Fig. 2b). At present it is recommended to choose
Poisson’s ratio in the range 0.2 ≤ ν ≤ 0.3 for calculations
with the HCA model.
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List of symbols

B Skempton’s B-value
CN Membrane penetration correction factor
CR System compliance ratio
δij Kronecker’s symbol
e Void ratio
ε1 Axial strain
ε3 Lateral strain
εv Volumetric strain
εq Deviatoric strain
εampl Strain amplitude
εacc Residual (accumulated) strain

13



Wichtmann et al. Canadian Geotechnical Journal, Vol. 47, No. 7, pp. 791-805, 2010

ε̇acc Intensity of strain accumulation
ε Strain tensor
ε̇ Trend of strain
ε̇
acc Rate of strain accumulation

ε̇
pl Plastic strain rate

E Young’s modulus
E Elastic stiffness tensor
ϕc Critical friction angle
fampl Amplitude function (HCA model)
fc Correction factor
fe Void ratio function (HCA model)
fN Function for cyclic preloading (HCA model)
fp Pressure function (HCA model)
fY Stress ratio function (HCA model)
fπ Function for polarization changes (HCA model)
F Correction factor for M
γampl Shear strain amplitude
gA Historiotropic variable (HCA model)
G Shear modulus
Gmax Small strain shear modulus
η Stress ratio
ηav Average stress ratio
ID Relative density
K Bulk modulus
K0 Earth pressure coefficient at rest
λ Lame constant
µ Lame constant
mv Volumetric component of m
mq Deviatoric component of m
M Constrained elastic modulus
M Critical stress ratio
Mc Critical stress ratio for triax. compr.
Me Critical stress ratio for triax. ext.
m Direction of strain accumulation
ν Poisson’s ratio
N Number of cycles
p Effective mean pressure
pav Average effective mean pressure
q Deviatoric stress
qampl Deviatoric stress amplitude
σ1 Total axial stress
σ′

1 Effective axial stress
σ3 Total lateral stress
σ′

3 Effective lateral stress
σ

′ Effective stress tensor
σ̇

′ Trend of effective stress
u Pore water pressure
Ȳ Normalized stress ratio
ζ Amplitude-pressure ratio
1 Second-order identity tensor
I Fourth-order identity tensor
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