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On the ”elastic stiffness” in a high-cycle accumulation model -
continued investigations

T. Wichtmanni); A. Niemunisii); Th. Triantafyllidisiii)

Abstract: The high-cycle accumulation (HCA) model proposed by the authors can be used to predict permanent
deformations or stress relaxation due to a large number (e.g. several millions) of load cycles with relative small strain
amplitudes (< 10−3). The predicted stress relaxation depends on the isotropic ”elastic stiffness” E used in the HCA model.
In order to calibrate the bulk modulus K, the rate of pore pressure accumulation obtained from an undrained cyclic test
and the rate of volumetric strain accumulation measured in a drained cyclic test are compared. Poisson’s ratio ν can be
determined from the shape of the stress relaxation path measured in an undrained test with anisotropic consolidation
stresses and strain cycles. Unfortunately, the calibration of K shown for a medium coarse sand in the previous paper [20]
was affected by membrane penetration effects. Consequently, all further studies have been performed on a fine sand for
which membrane penetration is negligible. The present paper reports on the new results. The strong pressure-dependence
of K and its independence of amplitude found in the previous study could be confirmed by the new tests. In addition, the
new experimental results reveal a density-dependence of K, while the bulk modulus is rather independent of stress ratio.
Furthermore, for the first time Poisson’s ratio ν used in the HCA model has been calibrated based on tests performed with
different amplitudes, densities and initial stresses.
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1 Introduction
High-cycle accumulation (HCA) models can be used for the
prediction of permanent deformations or stress relaxation
in non-cohesive soils caused by a large number (N > 103) of
cycles with relative small strain amplitudes (εampl < 10−3)
(so-called high-cyclic loading). Typical applications involve
several thousands up to millions of load cycles. Examples
are offshore wind power plants, where the cyclic loading is
caused by wind and waves, or machine foundations. Other
practical problems with high-cyclic loading are foundations
subjected to traffic (e.g. railways of high-speed trains or
magnetic levitation trains) and tanks, silos and watergates,
where the cyclic loading is due to the changing height of
the filling. Several HCA models have been proposed in the
literature (e.g. [1, 2, 6, 8, 10, 12]). Deficits of some of these
models (e.g. lack of generality, missing influencing param-
eters, 1D formulation) have been discussed in [16].

The HCA model proposed by Niemunis et al. [10] is
used in the framework of a special finite element calcu-
lation strategy. It is illustrated for a shallow foundation in
Fig. 1. Only a few cycles are calculated with a conventional
constitutive model, e.g. an elastoplastic multi-surface or a
hypoplastic model. Larger packages of cycles between are
treated with the HCA model. This model takes an incre-
ment of the number of cycles ∆N as input and predicts the
resulting permanent strain directly, without tracing the os-
cillating strain path during the individual cycles. During
the calculation with the HCA model the external load is
kept constant on its average value (Fig. 1). Therefore, the
accumulation of permanent strain due to cyclic loading is
treated similar to a creep deformation in viscoplastic mod-
els.
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The conventional calculation of the first two cycles
(Fig. 1) is necessary in order to determine the spatial field
of the strain amplitude which is an important input param-
eter of the HCA model. The deformations during the first
cycle may be significantly larger than those in the subse-
quent cycles. Therefore, the strain amplitude is determined
from the second cycle which is more representative for the
elastic portion of deformation during the subsequent cy-
cles. The strain amplitude is evaluated from the strain path
recorded in each integration point [10]. During the calcula-
tion with the HCA model, the strain amplitude is assumed
constant. However, the real spatial field of the strain am-
plitude may change due to compaction or re-distribution of
stress. Therefore, in order to update the field of the strain
amplitude, the calculation with the HCA model should be
interrupted after definite numbers of cycles (e.g. at N =
10, 100, 1000, etc.) and a control cycle should be calculated
conventionally (Fig. 1).

Although sophisticated elastoplastic or hypoplastic mod-
els have been developed with focus to cyclic loading (see
e.g. the review of elastoplastic models given by Zhang &
Wang [23] and their bounding surface model), the calcula-
tion strategy shown in Fig. 1 is more suitable for a large
number of cycles than the conventional one since the num-
ber of calculated increments and thus both the numerical
error and the calculation effort (especially in the case of 3D
prolems) are much smaller.

The basic assumption of the HCA model proposed by
Niemunis et al. [10] is that the strain path and the stress
path resulting from a high-cyclic loading can be decom-
posed into an oscillating part and a trend. The HCA model
takes the oscillating part (strain amplitude εampl) as input
and predicts the trend. The ”elastic stiffness” E discussed
in this paper is used in the basic constitutive equation of
the HCA model

σ̇av = E : (ε̇av − ε̇acc − ε̇pl) (1)
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Fig. 1: Strategy in FE calculations with the HCA model

In the context of HCA models the dot over a symbol means
the derivative with respect to the number of cycles N , i.e.
⊔̇ = ∂ ⊔ /∂N . The ”elastic stiffness” E interrelates the rate
of effective Cauchy stress σ̇av and the rate of strain ε̇av. The
index ⊔av means the average value of a variable during a
cycle. The accumulation rate ε̇acc = ε̇accm is calculated as
the product of the intensity of accumulation ε̇acc and the
direction of accumulation m (flow rule). The intensity ε̇acc

depends on various factors [10]:

ε̇acc = fampl ḟN fe fp fY fπ (2)

The six scalar functions consider the influences of strain
amplitude (fampl), cyclic preloading (ḟN ), average void ra-
tio (fe), average mean pressure (fp), average stress ratio
(fY ) and changes in polarization (fπ). The multiplicative
approach for ε̇acc was chosen heuristically and then to some
extent confirmed experimentally [16–18]. The rate of ac-
cumulation depends strongly on several subtle properties
of the soil like number of grain contacts, distribution of
grain contact normals, arrangement of grains, fluctuation
of stress, etc., i.e. ε̇acc cannot be expressed by the custom-
ary state variables (stress and void ratio) alone. Additional
state variables (gA, π, see [10] or [20] for details) describ-
ing the cyclic loading history have been introduced into the
HCA model phenomenologically, i.e. the relation to fabric
is not investigated. They affect the rate of strain accumu-
lation via ḟN and fπ. The plastic strain rate ε̇pl in Eq.
(1) keeps the stress path within the Matsuoka-Nakai yield
surface.

A simple isotropic stiffness E = K1⊗1+2G(I− 1
31⊗1)

with bulk modulus K = E/[3(1− 2ν)], shear modulus G =
E/[2(1+ν)], Young’s modulus E, Poisson’s ratio ν and two
identity tensors 1 and I has been used in the HCA model
so far. Two elastic constants (e.g. K and ν) need thus to be
calibrated. Note that E need not be hyperelastic contrary
to conventional models for cyclic loading, since the stress
or strain path during the individual cycles is not calculated
incrementally. The HCA model predicts the accumulation
trends only and thus cannot contradict the second law of
thermodynamics converting heat into work within a single
cycle.

According to classical elasticity, the Young’s modulus
of a contact of two spheres obeys E ∼ p1/3 wherein p is
pressure [5]. The stress-dependence E ∼ p1/2 derived for a
contact of two cones [3] is more realistic for granular mate-
rials. Numerous empirical formulas have been proposed in
the literature for the small-strain stiffness of sand. Formu-
lations of type E = A F (e) pn originating from Hardin and
Richart [4] are wide-spread. The constants A and n depend

on the grain size distribution curve and grain characteris-
tics. Typical values for the exponent n range from 0.4 for
poorly graded sands to 0.6 for well-graded materials [21].
Hyperbolic or exponential functions are usually applied for
the void ratio function F (e). Theoretically the Poisson’s
ratio ν must lie between -1 and 0.5 but negative values of ν
are highly improbable for physical reasons [7]. Typical val-
ues for sand derived from wave velocity measurements lie
in the range 0.2 ≤ ν ≤ 0.4 [22]. However, all these consid-
erations based on classical elasticity or experiments related
to small-strain stiffness may not apply to the stiffness E
used in a HCA model, since it does not interrelate stress
and strain rates but accumulation trends.

In conventional constitutive models the tangent stiff-
ness E = ∂σ̇/∂ε̇ can be determined experimentally from
a small (monotonic) unloading. Under cyclic loading Eq.
(1) returns creep ε̇av = ε̇acc at σ̇av = 0 or relaxation
σ̇av = −Eε̇acc at ε̇av = 0, so E interrelates creep and relax-
ation. Hence, the ”elastic stiffness” E of a HCA model has
to be determined from cyclic tests.

The bulk modulus K can be obtained from the relation
[20]

K = − ṗav

ε̇accv

=
u̇acc

ε̇accv

(3)

with the rate of isotropic stress relaxation ṗav or pore pres-
sure accumulation u̇acc obtained from an undrained cyclic
test and the rate of volumetric strain accumulation ε̇accv
measured in a drained cyclic test. Both, the drained and
the undrained test should be performed with similar (pos-
sibly identical) initial densities, consolidation stresses and
stress amplitudes.

Poisson’s ratio ν can be quantified from the shape of the
average effective stress path in the p-q plane, measured in
a strain-controlled undrained cyclic test with anisotropic
initial stresses. In that case, the ratio of deviatoric (q̇av)
and isotropic (ṗav) stress relaxation predicted by the HCA
model depends on ν ( [20], see Figure 2):

q̇av

ṗav
=

9(1− 2ν)

2(1 + ν)

2ηav

M2 − (ηav)2
(4)

with average stress ratio ηav = qav/pav and

M =
6 sinφc

3− sinφc
·
{

1 for ηav ≥ 0
1 + ηav/3 for ηav < 0

(5)

φc is the critical friction angle.
In [20] the calibration of K has been demonstrated for a

medium coarse sand (mean grain size d50 = 0.55 mm). Un-
fortunately, the undrained cyclic tests performed on this
sand were affected by membrane penetration effects. Al-
though a correction has been applied in the evaluation of
K, some uncertainty remained. Furthermore, only data for
medium dense samples have been presented in [20]. The
influence of density and average stress ratio on K has not
been inspected in that earlier study. Stress relaxation ex-
periments from which Poisson’s ratio ν can be quantified
were also not available at the time of the publication of [20].

The objective of this paper is the presentation of the
experimental results that have been collected after comple-
tion of the study documented in [20]. In order to minimize
membrane penetration effects all further tests have been
performed on a fine sand with mean grain size d50 = 0.14
mm and uniformity coefficient Cu = d60/d10 = 1.5. The
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Fig. 2: Average stress paths predicted by the HCA model for
various ν-values

grain shape is subangular and the minimum and maximum
void ratios are emin = 0.677 and emax = 1.054. The spe-
cific gravity has been determined as ϱs = 2.65 g/cm3. Due
to the small grain sizes, membrane penetration effects are
negligible for this sand. The dependence of bulk modulus
K on pressure, amplitude, density and stress anisotropy
has been inspected based on stress-controlled drained and
undrained cyclic tests performed on the fine sand. Further-
more, strain-controlled tests with different amplitudes, den-
sities and initial stresses have been conducted in order to
calibrate Poisson’s ratio ν.

2 Experimental study on bulk modulus K
All tests within the present experimental study were per-
formed on triaxial specimens with diameter d = 10 cm and
height h = 10 cm. The specimens were prepared by air
pluviation and tested under water-saturated conditions. A
back pressure of 500 kPa was used in most tests (in some
tests 200 kPa was applied) in order to guarantee a high
degree of saturation, i.e. a B-value larger than 0.99. The
stress cycles were applied with a load press driven by a
servomotor, using low displacement rates ≤ 0.05 mm/min.

2.1 Pressure- and amplitude-dependence
13 pairs of drained and undrained stress-controlled cyclic
triaxial tests were performed in order to study the pressure-
and amplitude-dependence of bulk modulus K. All sam-
ples were prepared with medium density ID0 = (emax −
e)/(emax − emin) = 0.51 - 0.68 and consolidated under
isotropic stresses. Five different initial pressures p0 = 50,
100, 200, 300 and 500 kPa were applied. With the excep-
tion of p0 = 500 kPa, for each initial pressure three dif-
ferent amplitude-pressure ratios ζ = qampl/p0 = 0.2, 0.25
and 0.3 were tested. A single amplitude (ζ = 0.25) was ap-
plied at p0 = 500 kPa. For each combination of initial pres-
sure and amplitude, one sample was tested under drained
conditions while another one was tested undrained. In the
drained tests the initial and average pressures are identical,
i.e. p0 = pav.

The HCA model describes the trends of stress and strain
during the regular cycles only. The first irregular cycle,
which may generate considerably larger residual strains or

stress relaxation, is calculated with a conventional constitu-
tive model (Fig. 1). For the calibration ofK, the regular cy-
cles in both, the drained and the corresponding undrained
test should start from the same effective stress. For that
purpose, the first irregular cycle was applied drained in
all 26 tests, i.e. the average effective stress did not change
during the first cycle. In the ”undrained” tests the drainage
was closed after the irregular cycle. The data from the first
irregular cycle is not included in the following evaluation
of K, i.e. N = 1 refers to the end of the first regular cycle.

The results of a typical undrained cyclic test are pre-
sented in Figure 3. Figure 3a shows the accumulation of
pore water pressure u and the accompanying decrease of
the lateral effective stress σ′

3 = σ3−u with increasing num-
ber of cycles. The increase of the amplitude of axial strain
especially after the so-called ”initial liquefaction” (i.e. when
u/σ3 = 1 is reached for the first time) is obvious in Figure
3b and also in the plot of the q-ε1 hystereses in Figure 3c.
After initial liquefaction several cyclic mobility loops are
passed through. The corresponding butterfly-shaped effec-
tive stress path is obvious in the p-q diagrams provided
for the tests with p0 = 100 and 300 kPa in Figure 4. The
undrained cyclic loading was stopped after completion of
the cycle in which the failure criterion |ε1| = 10 % was ful-
filled. Similar results as those presented in Figs. 3 and 4
have been obtained by many other researchers, see e.g. [14]
or [23].

Figure 5 shows the ratio of accumulated pore water pres-
sure uacc and initial effective mean pressure p0 as a func-
tion of the number of cycles. The data measured in all 13
undrained tests is provided. A sample is liquefied at uacc/p0
= 1. As expected, for a certain initial effective mean stress
p0, the rate of pore water pressure accumulation u̇acc in-
creases considerably with increasing stress amplitude qampl.
The curves of accumulated volumetric strain εaccv (N) ob-
served in the drained cyclic tests are presented in Figure
6. For a given average mean pressure pav = p0, the rate
of volumetric strain accumulation ε̇accv also increases with
increasing stress amplitude.

For each pair of drained and undrained cyclic tests the
bulk modulusK was calculated from Eq. (3). The rates u̇acc

and ε̇accv were obtained from the trend curves uacc(N) and
εaccv (N) measured in the undrained or drained test, respec-
tively. The rate of pore water pressure u̇acc ≈ ∆uacc/∆N
was evaluated using increments of ∆uacc = 10 kPa. Be-
fore Eq. (3) can be applied, the rates have to be corrected
considering the divergence of the effective average stresses,
void ratios and strain amplitudes in the drained and the
undrained cyclic test. During an undrained cyclic test with
constant stress amplitude the average mean pressure de-
creases, i.e. the HCA model function fp increases. Simulta-
neously, the strain amplitude εampl increases considerably,
i.e. fampl increases. In the drained test pav is constant and
the strain amplitude does hardly change, but the void ratio
e decreases with N , i.e. fe decreases. In order to evaluate
u̇acc and ε̇accv for exactly the same state, that means same
values of strain amplitude εampl, average void ratio eav, av-
erage mean pressure pav and cyclic preloading gA, the rate
ε̇accv from the drained tests has been corrected by a factor
fc consisting of four multipliers:

fc =
fUD
ampl

fD
ampl

fUD
e

fD
e

fUD
p

fD
p

ḟUD
N

ḟD
N

(6)

The indices ⊔UD and ⊔D indicate the undrained or drained
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Fig. 3: Development of a) total and effective stress components and b) axial strain with the number of cycles in a stress-controlled
undrained cyclic triaxial test on medium dense fine sand. c) Deviatoric stress versus axial strain.
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Fig. 4: Effective stress paths in the p-q-plane measured in the undrained cyclic tests on medium dense fine sand with initial effective
mean pressures p0 = 100 or 300 kPa, respectively

Campl Ce Cp CY CN1 CN2 CN3

1.26 0.53 0.15 3.22 1.28 · 10−4 0.64 0

Table 1: HCA parameters for the fine sand determined from the
drained cyclic test data

test, respectively. The functions fampl, fe, fp and ḟN were
calculated with the parameters Campl, Ce, Cp, CY , CN1,
CN2 and CN3 given in Table 1. These parameters have
been determined from the data of the drained cyclic tests,
following the procedure described e.g. in [19]. Note that
recently the exponent Campl of the amplitude function

fampl = (εampl/10−4)Campl has been introduced as an addi-
tional material constant. A constant exponent 2.0 has been
still used in [10] and [19, 20]. If one of the four multipliers
in Eq. (6) was larger than 2.0 or if the strain amplitude ex-
ceeded εampl = 10−3 (upper border of HCA model validity)
the respective data were omitted in the analysis of K.

Figure 7 shows the bulk modulus K = u̇acc/ε̇accv deter-
mined from the 26 tests on medium dense fine sand. No
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Fig. 7: Bulk modulus K = u̇acc/ε̇accv for medium dense fine sand
as a function of average mean pressure pav
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Fig. 9: Results of an undrained cyclic test on dense fine sand (p0 = 200 kPa, ζ = qampl/p0 = 0.30, ID0 = 0.80)

significant influence of the amplitude on K could be de-
tected from the data in Figure 7. Despite some scatter of
the data, the obvious pressure-dependence of K can be ap-
proximated by

K = A p1−n
atm (pav)n (7)

The parameters A and n of Eq. (7) can be either determined
from a curve-fitting of Eq. (7) to the data in Figure 7 or
from recalculations of the undrained cyclic tests with the
HCA model. In these recalculations A and n are varied until
the curves uacc(N) for various pressures and amplitudes are
reproduced well. Using the latter method the parameters
A = 400 and n = 0.50 were found appropriate. The curves
uacc/p0(N) from the recalculations using these parameters
are given as solid curves in Fig. 5. The initial void ratios, the
measured strain amplitudes εampl(N) and the parameters
given in Table 1 were used as input for the recalculations.
Eq. (7) with A = 400 and n = 0.50 is also given as solid
line in Figure 7.

The exponent n = 0.5 found appropriate for the HCA
stiffness is in accordance with the contact of two cones ac-
cording to Goddard [3]. It lies in the middle of values usu-
ally measured for a small-strain stiffness. The parameter
A and thus the magnitude of K is, however, considerably
smaller than in the case of a small-strain stiffness [20].

Recalculations of the drained cyclic tests with the HCA
model have been added as thick solid curves in Figure 6.
The HCA model prediction agrees quite well with the mea-
sured curves εaccv (N). From Figures 5 and 6 it can be con-
cluded that the HCA model with a single set of param-
eters (Campl, . . .CN3) in combination with the pressure-
dependent bulk modulus according to Eq. (7) describes
well both, the accumulation of pore water pressure in the
undrained cyclic tests and the accumulation of volumetric

strain in the drained cyclic tests.

2.2 Density-dependence of K
The density-dependence of the bulk modulusK was studied
in six tests on loose (ID0 = 0.22 - 0.26) and six tests on
dense (ID0 = 0.76 - 0.82) samples of the fine sand. For each
density three different initial pressures p0 = 100, 200 and
300 kPa were applied. The amplitude-pressure ratio was
chosen as ζ = 0.15 for the loose specimens while it was
0.30 in the tests on the dense ones. For each density three
specimens were tested under drained conditions while the
remaining three were tested undrained.

Figure 8 presents typical results from an undrained cyclic
test on loose sand, while similar data for dense sand is given
in Figure 9. For the loose samples failure was defined when
an axial strain |ε1| = 10 % was reached while |ε1| = 5 %
was chosen as the failure criterion for the dense sand. The
loose sand failed due to large extensional strain developed
within a single cycle. In contrast, several cyclic mobility
loops with a gradual increase of the axial strain amplitude
were observed for the dense sand.

The curves uacc/p0(N) measured in the undrained cyclic
tests on the loose and dense sand samples are provided
in Figure 10a and 10d while the curves εaccv (N) from the
drained tests are given in Figure 10b and 10e. The bulk
modulus K evaluated from these curves is shown in Figure
10c and 10f. The prediction of Eq. (7) with the parameters
found appropriate for the medium dense sand (A = 400,
n = 0.5) has been added as dashed line in Figure 10c and
10f. Despite the significant scatter of data, the increase of
K with increasing density is obvious in Figure 10c and 10f.
The majority of K-data for loose sand plots below the av-
erage curve for the medium dense sand (Figure 10c), while
most of the data points for dense samples lie above (Figure
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10f).
Appropriate parameters A and n of Eq. (7) for the loose

and the dense sand have been determined from recalcu-
lations of the undrained cyclic tests. The exponent n =
0.5 was found suitable for all tested densities. The curves
uacc/p0(N) measured for the loose sand can be reproduced
well with a parameter A = 290 (see solid curves in Figure
10a), while A = 550 is appropriate for dense sand (solid
curves in Figure 10d). The relationships K(pav) established
by Eq. (7) with A = 290 and n = 0.5 or with A = 550 and n
= 0.5, respectively, have been added as solid lines in Figure
10c and 10f.

The volumetric strain accumulation curves εaccv (N) pre-
dicted by the HCA model with the parameters in Table 1
have been added as solid curves in Figure 10b and 10e. The
good agreement with the experimental data for loose and

dense sand confirms the void ratio function fe of the HCA
model.

In Figure 11 the A parameter of Eq. (7) obtained from
the tests on loose, medium dense and dense sand is plot-
ted versus an average void ratio eav of the test series. The
obvious decrease of A with increasing void ratio can be

described by A = 1209 (1.63−eav)2

1+eav . A similar void ratio
function is usually applied for the small-strain shear mod-
ulus of sand [4, 21]. Therefore, the density- and pressure-
dependence of the bulk modulus for fine sand can be ex-
pressed by:

K = 1209
(1.63− eav)2

1 + eav
1000.5 (pav)0.5 (8)

2.3 Stress ratio-dependence of K
In order to quantify the influence of the average stress ra-
tio ηav on K six additional tests have been performed with
a consolidation stress ratio η0 = 0.75. The data of these
tests has been compared to that for isotropically consoli-
dated samples (η0 = 0). The cyclic loading was commenced
at three different initial pressures (p0 = 100, 200 and 300
kPa). All samples were medium dense (ID0 = 0.57 - 0.66)
and the amplitude-pressure ratio was chosen as ζ = 0.25
in all tests. A typical test result is provided in Figure 12.
This figure shows the accumulation of residual axial strain
with the number of cycles, the q-ε1 hystereses and the ef-
fective stress path in the p-q-plane measured in the test
with p0 = 200 kPa. The excess pore water pressure tends
to reach an asymptotic value after a certain number of cy-
cles (Figure 13). The accumulation of axial strain continues
even when the asymptotic effective stress has been almost
reached (Figure 12a).

During an undrained cyclic test with anisotropic consol-
idation stresses the average stress ratio ηav increases due to
the decrease of pav while qav remains constant. The increase
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of ηav implies an increase of the intensity of accumulation,
i.e. a larger HCA model function fY . Furthermore, the di-
rection of accumulation becomes more deviatoric with in-
creasing ηav, i.e. the ratio 1/ω = ε̇accq /ε̇accv gets larger. Since
ηav is constant in the drained tests, for the evaluation of
the bulk modulus K at ηav > 0, the correction factor fc in-
troduced by Eq. (6) has to be extended by two additional
factors, considering fY and ω:

fc = . . . · f
UD
Y

fD
Y

√
1/3 + 3/2(1/ωD)2√
1/3 + 3/2(1/ωUD)2

(9)

with ω = (M2 − (ηav)2)/(2ηav) adapted from the Modi-
fied Cam-clay model. The K-values evaluated for the three
pairs of drained and undrained cyclic tests consolidated at
η0 = 0.75 lie close to the data for isotropic stresses given
in Figure 7. Furthermore, the pore water pressure accumu-
lation measured in the undrained tests with η0 = 0.75 can
be well reproduced with Eq. (7) using the parameters A =
400 and n = 0.5 derived for isotropic consolidation stresses
(see the solid curves in Figure 13). This comparison of the
tests with η0 = 0 and η0 = 0.75 suggests that the stress
ratio ηav need not be considered in the equation for bulk
modulus K.

2.4 Comparison with earlier study on medium
coarse sand

The relationship K(pav) found in the present study for
medium dense fine sand agrees well with that reported
in [20] for medium coarse sand (d50 = 0.55 mm, Cu = 1.8).
Eq. (7) with parameters A = 467 and n = 0.46 was found
appropriate for medium dense specimens of the medium
coarse sand in [20]. These parameters are close to those (A
= 500 and n = 0.50) for medium dense fine sand derived
in the present study. The comparison of the test results
for fine and medium coarse sand suggests that bulk mod-
ulus K is similar for uniform sands having a comparable
uniformity coefficient. However, the dependence of K on
parameters like grain size distribution curve or grain shape
needs a more detailed study in future.

3 Experimental study on Poisson’s ratio ν
The dependence of Poisson’s ratio ν on strain amplitude,
void ratio, pressure and stress ratio was studied in several
undrained cyclic tests with anisotropic consolidation and
strain cycles. The first irregular cycle was applied drained
in all tests, i.e. the average effective stress path during the
regular cycles starts from the consolidation stress p0, η0.

3.1 Dependence of ν on amplitude

First, three tests with different strain amplitudes εampl
1 =

4 × 10−4, 6 × 10−4 or 8 × 10−4 have been performed on
medium dense specimens consolidated at p0 = 200 kPa and
η0 = 0.75. The effective stress paths measured in these tests
are given in the p-q plane in Figure 14. Independently of
the strain amplitude a zero effective stress state (i.e. the
origin of the p-q-plane) was reached after a certain number
of cycles. The average effective stress paths (measured at
ε1 = 0) from these three tests have been summarized in
the pav-qav diagram given in Figure 15a. No influence of
the strain amplitude on the stress relaxation paths - and
thus on ν - could be detected in the range of tested strain
amplitudes.

3.2 Dependence of ν on density
The void ratio-dependence of ν has been studied in five
tests with different initial relative densities lying in the
range 0.38 ≤ ID0 ≤ 0.97. The initial stress (p0 = 200 kPa,

η0 = 0.75) and the strain amplitude (εampl
1 = 6 × 10−4)

were the same in all tests. The effective stress paths mea-
sured in three of these tests are given in Figure 16. The
pav-qav stress paths for the five different densities almost
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Fig. 18: Effective stress paths in the p-q-plane in undrained tests with strain cycles with different initial stress ratios η0 (all tests:

εampl
1 = 6× 10−4, p0 = 200 kPa)

coincide (Figure 15a). Therefore, it can be concluded that
ν is density-independent.

3.3 Dependence of ν on pressure
The pressure-dependence of ν has been inspected in four
tests with different initial mean pressures p0 between 50 and
300 kPa. All samples were medium dense, consolidated at
η0 = 0.75 and subjected to strain cycles with an amplitude

εampl
1 = 6×10−4. The effective stress paths measured in the
tests with p0 = 50, 100 and 300 kPa are given in Figure 17.
When the average effective stress paths from the tests with
different initial pressures are plotted in a diagram with nor-
malized axes (pav/p0 and qav/q0, Figure 15b), apart from
some deviation for p0 = 50 kPa, the shape of the stress
relaxation curves nearly coincides. Therefore, for practical
purposes ν can be treated pressure-independent.

3.4 Dependence of ν on stress ratio
Finally, the influence of the initial stress ratio η0 has been
tested on medium dense specimens. Stress ratios between
-0.75 and 1.15 have been tested. All tests were started at p0
= 200 kPa and performed with the same strain amplitude

εampl
1 = 6 × 10−4. The effective stress paths measured in
these tests are collected in Figure 18. Independently of the
initial stress ratio a zero effective stress has been reached

in all tests after a certain number of cycles. This is also
obvious from the average stress paths shown in Figure 15c.

In two additional tests with η0 = -0.50 and 0.75 the first
irregular cycle was applied undrained (and not drained as
in all other tests). However, nearly the same shape of the
average effective stress path as in the tests with a drained
first cycle was obtained.

In order to quantify Poisson’s ratio ν, the strain-
controlled undrained cyclic tests were recalculated with the
HCA model. Several calculations with different ν-values
were performed for a test until the measured average effec-
tive stress path could be reproduced satisfactorily. Figure
19 compares some of the measured pav-qav-curves with the
predictions made by the HCA model (thick solid curves) us-
ing the optimum ν-values given in the gray-shaded boxes.
For initial stress ratios in the range 0 ≤ η0 ≤ 0.75, a Pois-
son’s ratio ν ≈ 0.3 is appropriate - independently of strain
amplitude, soil density and initial pressure p0 (Figure 19c-
f). For initial stress ratios η0 > 0.75 larger Poisson’s ratios
are necessary (e.g. ν = 0.36 for η0 = 1.01 and ν = 0.39
for η0 = 1.15, Figure 19a,b). The same conclusion can be
drawn for |η0|-values in the triaxial extension regime (ν =
0.34 for η0 = -0.74, Figure 19h). The large increase of the
deviatoric stress qav during the first regular cycle measured
in the tests with η0 = -0.25 and -0.49 can be reproduced
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only with very low ν-values (e.g. ν = 0.10 for η0 = -0.49,
Figure 19g).

The stress-ratio dependence of Poisson’s ratio could be
described e.g. by the formula ν = 0.29+0.12(η0/M)2. How-
ever, a constant mean value ν = 0.32 may be sufficient for a
practical application of the HCA model. Except the initial
stress ratios η0 = 1.15, -0.25 and -0.49, the pav-qav-curves
measured in all tests can be sufficiently well reproduced
with ν = 0.32 (see the thick dashed curves given in Fig-
ure 19). Therefore, the choice of ν = 0.32 is recommended
for calculations with the HCA model. The Poisson’s ratio
ν = 0.32 found appropriate for the HCA stiffness lies in
the middle of values usually measured for a small-strain
stiffness [22].

Figure 20 shows a comparison between the curves of ac-
cumulated pore water pressure uacc(N) measured in four
of the strain-controlled tests and predictions made by the
HCA model, using the parameters in Table 1, bulk modulus
according to Eq. (8) and ν = 0.32. A good congruence be-
tween the experimental and the predicted uacc(N)-data can
be stated for the initial phase of the tests, i.e. until a pore
pressure ratio uacc/p0 ≈ 0.8 is reached. During the strain
cycles applied at uacc/p0 > 0.8, the pore pressure accumu-
lation measured in the tests is larger than that predicted
by the HCA model.

There are several possible causes for this underestima-
tion of the accumulation rate at low effective stresses pav <
50 kPa: First, the HCA model functions fp or fampl could
be underestimated at low p-values since they have been
calibrated based on drained cyclic tests with pav ≥ 50 kPa.
Drained cyclic tests with lower pressures are, however, dif-
ficult to perform in the laboratory. Second, the bulk mod-
ulus K may be underestimated at low pressures. The data
in Figure 7 suggests, however, that at least in the range 20
kPa ≤ pav ≤ 50 kPa, K is adequately described by Eq. (8).
Third, several authors (e.g. [13], [23] and [11]) observed a la-
tent accumulation of strain occurring due to cycles applied
in the liquefied state, i.e. at σav = 0. It becomes visible
as volumetric strain during reconsolidation. As an exam-
ple, the results of an experiment performed by Niemunis et
al. [11] are given in Figure 21. The medium dense sample
of a silty fine sand was liquefied three times by strain cy-
cles (εampl = 2 × 10−3). After a certain number of cycles
applied in the liquefied state the drainage was opened to al-
low for reconsolidation. The magnitude of volumetric strain
during reconsolidation increased with increasing number of
strain cycles applied at σav = 0. This latent accumulation
at σav = 0 has not been implemented into the HCA model
so far. The larger accumulation rates near liquefaction in
the experiments presented in Figure 20 may be connected
with this phenomenon. The cumulative behaviour of sand
in the (nearly) liquefied state is not well understood yet
and thus needs further experimental studies. Such deficit
does not become evident in the recalculations of the stress-
controlled experiments (e.g. Figure 5) where uacc/p0 ≈ 0.8
is immediately followed by full liquefaction and large strain
amplitudes. The large values of εampl lead to large accumu-
lation rates u̇acc predicted by the HCA model via fampl.

4 Summary, conclusions and outlook
The ”elastic stiffness” E used in the constitutive equation
σ̇av = E : (ε̇av − ε̇acc − ε̇pl) of the high-cycle accumula-
tion (HCA) model [10] has been further inspected based
on drained and undrained cyclic tests with strain or stress

control performed on a fine sand.
Bulk modulus K = u̇acc/ε̇accv has been evaluated from

pairs of drained and undrained cyclic triaxial tests with
similar initial state and stress amplitudes. The rate u̇acc of
pore water pressure accumulation was obtained from the
undrained test while the rate of volumetric strain accumu-
lation ε̇accv was gathered from the drained test. Such pairs of
tests were performed with different initial densities, consol-
idation stresses (isotropic and anisotropic) and stress am-
plitudes. The pressure-dependence of bulk modulus K for
medium dense fine sand was found of similar magnitude as
in an earlier study on medium coarse sand [20], where mem-
brane penetration effects may have affected the results. Due
to the fine grains these effects are minimized in the present
study. The new tests demonstrate, that the bulk modulus
strongly decreases with increasing void ratio, but that it is
rather independent of amplitude and average stress ratio
ηav = qav/pav. With the pressure- and density-dependent
bulk modulus defined by Eq. (8) the HCA model can repro-
duce both, the accumulation of pore water pressure in the
undrained cyclic tests and the accumulation of volumetric
strain in the drained cyclic tests.

Poisson’s ratio ν was quantified from the shape of the
stress relaxation path measured in undrained triaxial tests
with anisotropic consolidation and strain cycles. It has been
demonstrated that ν is almost independent of amplitude,
density and pressure. Although higher values of ν would
more accurately describe the measured pav-qav-curves in
the tests with high initial stress ratios (η0 > 1) and sig-
nificantly lower values would be appropriate for an ini-
tial stress in some parts of the triaxial extension regime
(−0.50 < η0 ≤ 0), a constant value of ν = 0.32 is pro-
posed for a practical application of the HCA model, since
most stress relaxation paths can be sufficiently well repro-
duced with this value. The pore pressure accumulation in
the strain-controlled tests is well predicted by the HCA
model up to uacc/p0 ≈ 0.8. Reasons for an underestima-
tion of the accumulation rate near the liquefied state (i.e.
at uacc/p0 > 0.8) are discussed in the paper.

In future, in order to develop a simplified calibration pro-
cedure based on index properties, K and ν will be quanti-
fied for a couple of sands having different grain size distribu-
tion curves, grain shapes, etc. A simplified estimation of K
based on the unloading curve in an oedometric compression
test as suggested in [20] will be also further investigated.

The number of cycles applied in the experiments of this
paper is usually less than 1,000, mainly due to liquefac-
tion in the undrained tests. Some experiments even had
less than 100 cycles. Such relatively low number of cycles
could be eventually treated by a conventional constitutive
model formulated with stress and strain rates. Calculations
with the hypoplastic model extended by the intergranu-
lar strain concept [9, 15] performed by the authors showed
several difficulties to reproduce the test results. For the
drained tests, an accumulation εacc ∼ N is predicted by
hypoplasticity while εacc ∼ ln(N) is observed in the exper-
iments. In the undrained tests a liquefied state (σav = 0) is
reached after a sufficiently large number of cycles, indepen-
dently of soil density, amplitude, initial stress and test con-
trol (with the exception of the stress-controlled tests with
anisotropic consolidation stresses). The recalculations with
the hypoplastic model sometimes end up in an attractor
state with σav ≫ 0. Furthermore, the dependence of the
accumulation rate on density, strain amplitude and aver-
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Fig. 19: Comparison between the average effective stress paths measured in the strain-controlled undrained cyclic tests and predictions
by the HCA model, using either ν = 0.32 (dashed curves) or the ν-values given in the gray-shaded boxes (solid curves).
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Fig. 20: Comparison between the pore water pressure accumulation curves measured in the strain-controlled undrained cyclic tests
and predictions by the HCA model, using the parameters in Table 1, bulk modulus according to Eq. (8) and ν = 0.32

age stress observed in the drained or undrained cyclic tests
can be hardly reproduced by the hypoplastic model, using
a single set of parameters that has been mainly calibrated
from tests with monotonic loading. There are elastoplas-
tic models that may be more suitable for cyclic loading
(see e.g. [23]). However, using a HCA model even for low
number of cycles (N < 1000) seems reasonable as well. A
more detailed comparison of the experimental results with
the prediction by conventional constitutive models will be
presented in another paper in future.
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Fig. 21: Development of pore pressure ratio uacc/p0 and void
ratio in an experiment with three undrained cyclic phases each
followed by a reconsolidation
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List of symbols
B Skempton’s B-value
e Void ratio
eav Average void ratio
ε1 Axial strain
ε3 Lateral strain
εv Volumetric strain (= ε1 + 2ε3 for triaxial tests)
εq Deviatoric strain (= 2/3(ε1 − ε3) for triaxial tests)
εampl Strain amplitude
εacc Residual (accumulated) strain
ε̇acc Intensity of strain accumulation
ε̇accv Rate of volumetric strain accumulation
εav Average strain tensor
ε̇av Trend of average strain
ε̇acc Rate of strain accumulation

ε̇pl Plastic strain rate
E Young’s modulus
E ”Elastic” stiffness of HCA model
φc Critical friction angle
fampl Amplitude function (HCA model)
fc Correction factor
fe Void ratio function (HCA model)
fN Function for cyclic preloading (HCA model)
fp Pressure function (HCA model)
fY Stress ratio function (HCA model)
fπ Function for polarization changes (HCA model)
gA Historiotropic variable (HCA model)
G Shear modulus
η Stress ratio
ηav Average stress ratio
ID Relative density
K Bulk modulus
M Critical stress ratio
m Direction of strain accumulation
ν Poisson’s ratio
N Number of cycles
p Effective mean pressure (= (σ′

1 + 2σ′
3)/3 in triaxial tests)

pav Average effective mean pressure
π Historiotropic variable (HCA model)
q Deviatoric stress (= σ1 − σ3 in triaxial tests)
qampl Deviatoric stress amplitude
σ1 Total axial stress
σ′
1 Effective axial stress

σ3 Total lateral stress
σ′
3 Effective lateral stress

σ Effective stress tensor
σav Average effective stress tensor
σ̇av Trend of average effective stress
u Pore water pressure
uacc Accumulated pore water pressure
u̇acc Rate of pore water pressure accumulation
ζ Amplitude-pressure ratio (= qampl/p0 or qampl/pav)
1 Second-order identity tensor
I Fourth-order identity tensor
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