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Abstract: In order to predict permanent deformations by means of a high-cycle accumulation (HCA) model, a random
cyclic loading, i.e. a loading with frequently changing amplitudes, has to be grouped into packages of cycles each with a
constant amplitude. Based on a series of drained triaxial tests on fine sand, in which the same cycles have been applied
either in an order with frequently changing amplitudes or in packages of cycles, it is demonstrated that such bundling
is conservative. Predictions by the HCA model of Niemunis et al. [19] are confronted with experimental data and with
other approaches for the prediction of permanent deformations under packages of cycles, among them the frequently cited
procedure of Stewart [26]. An effect not captured in the HCA model or in any other approach yet has been detected in
another series of tests with a change of the average stress between bundles of cycles: The monotonic loading associated
with this change can partially or fully erase the memory of the sand regarding its cyclic preloading history.

Keywords: Drained cyclic triaxial tests; random cyclic loading; packages of cycles; high-cycle accumulation model; erasure
of cyclic preloading memory

1 Introduction
In many practical problems with high-cyclic loading, i.e. a
loading with a large number of cycles N > 103 with rela-
tively small to moderate strain amplitudes εampl < 10−3,
the amplitude of the cycles changes frequently. For exam-
ple, foundations of offshore wind power plants (OWPP) are
subjected to such random cyclic loading caused by wind
and waves. In order to predict the permanent deformations
of the OWPP foundations, e.g. by means of a high-cycle
accumulation (HCA) model as that proposed by Niemunis
et al. [19], it is necessary to group the cycles into a lim-
ited number of packages each with an (almost) constant
amplitude (Figure 1). The packages can then be treated se-
quentially. However, such bundling would be only allowed
if the original random order of amplitudes generates the
same final residual strain as the same cycles when ordered
into packages. A respective experimental examination with
drained cyclic triaxial tests is documented in Section 2.
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Fig. 1: Bundling of a random order of amplitudes into packages
of cycles

Several approaches for the prediction of permanent de-
formations of shallow foundations or piles due to packages
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of cycles as those shown on the right-hand side of Figure 1
have been proposed in the literature. The most popular one
is that of Stewart [26], which nowadays is frequently cited
in the literature dealing with OWPP foundations for the
North sea [1, 10, 11, 27]. In Section 3 this approach is con-
fronted with the prediction of the HCA model of Niemunis
et al. [19] and with experimental results. Other less suitable
procedures [4, 17] are also briefly addressed.

In all experimental studies with packages of cycles pre-
sented in the literature so far, the average stress has been
kept constant during the entire test procedure. In contrast,
Section 4 presents a study with changes of the average stress
between consecutive packages of cycles. These tests are of
practical relevance for OWPP foundations too, since be-
side the amplitude also the average value of the wind and
wave loading frequently changes. Based on the results of
these new tests an effect not captured in any procedure for
packages of cycles yet has been discovered: The memory
of the sand regarding its cyclic preloading history can be
partially or fully erased by the monotonic loading caused
by the changes of the average stress.

An irregular cyclic stress or strain history is also caused
by an earthquake. For a liquefaction risk analysis, it is
usually converted into an equivalent number of uniform
cycles, i.e. a single package of cycles with constant am-
plitude. Respective procedures and experimental stud-
ies with undrained cyclic loading are described e.g. in
[2, 6–8, 12, 18, 21–24, 28, 29]. The present paper, however,
concentrates on a drained high-cyclic loading.

2 Comparison of tests with frequently changing
amplitudes and packages of cycles

The tests dealing with the question whether a bundling of
a random cyclic loading is allowed or not have been per-

1



Wichtmann & Triantafyllidis Soil Dynamics and Earthquake Engineering, Vol. 101, pp. 250-263, 2017

formed on Karlsruhe fine sand (fines content FC ≈ 0 %,
mean grain size d50 = 0.14 mm, uniformity coefficient Cu

= 1.5, minimum void ratio emin = 0.677, maximum void
ratio emax = 1.054, grain density %s = 2.65 g/cm3). The
medium dense samples were prepared by dry air pluvia-
tion using a funnel. The average stress was the same in all
tests (average mean pressure pav = 200 kPa, average stress
ratio ηav = qav/pav = 0.75, with p = (σ′

1 + 2σ′

3)/3 and
q = σ′

1−σ′

3). The cyclic loading was applied with a loading
frequency of 0.1 Hz in the axial direction while the lateral
stress has been kept constant. The four stress amplitudes
qampl = 20, 40, 60 and 80 kPa were applied with 12,500
cycles each. The total number of cycles was thus 50,000 in
all tests.

The sequence of the stress amplitudes has been varied
(Figure 2a). Four load types with frequently changing am-
plitudes (upper row of schemes in Figure 2a) and four other
ones with packages of cycles (lower row in Figure 2a) have
been tested. In test type No. 1 the amplitudes were mod-
ulated, i.e. applied in an order similar to a wavelet signal.
Four cycles with increasing amplitude (20 → 40 → 60 →
80) were followed by four other ones with descending order
(80 → 60 → 40 → 20). 6250 of these wavelets were applied
in succession. In test type No. 2 the bundle of four cycles
with ascending order of amplitudes (20 → 40 → 60 → 80)
was applied 12,500 times. Type No. 3 was similar to type
No. 2, but the order of amplitudes was chosen as 40→ 80→
20 → 60. In the last type of test with frequently changing
amplitude (type No. 4) eight cycles with the sequence 20 →
20 → 40 → 40 → 60 → 60 → 80 → 80 were repeated 6,250
times. In case of the load types Nos. 5 to 8 (Figure 2a) the
cycles were grouped to four or eight packages with 12,500 or
6,250 cycles of equal amplitude, respectively. These pack-
ages were applied in ascending or descending order. Usually,
a single test with 0.58 ≤ ID0 = (emax − e)/(emax − emin) ≤
0.65 was performed for each type of load signal. Only the
signal types 2 and 5 were studied in an additional test at a
slightly higher relative density ID0 ≈ 0.7.

As outlined in [19, 35, 38] the first cycle of a bundle of
cycles may lead to larger residual deformations than the
subsequent ones, because the first quarter of the cycle (or
some part of this first quarter) represents a first loading.
Therefore, the first cycle is sometimes termed irregular. The
HCA model describes the residual strain accumulation due
to the subsequent regular cycles only. In the tests of types
Nos. 1 - 4 (Figure 2a) a single cycle with an amplitude qampl

= 80 kPa and a lower loading frequency of 0.01 Hz was
applied prior to the 50,000 cycles with frequently changing
amplitudes, in order to anticipate the portion of residual
strain caused by the first loading. The sample deformations
caused by this first cycle are not further used in this paper.
In case of the tests with packages of cycles (types Nos. 5 -
8 in Figure 2a), each package with 6,250 or 12,500 cycles
was preceded by a single cycle with the same amplitude
as the following bundle. Also the deformations caused by
these first cycles are not included in the further analysis
of residual strains. Only the data from the regular cycles
being of relevance for the HCA model are discussed in the
following.

Figure 2b presents the measured development of total
residual strain εacc (with ε =

√

(ε1)2 + 2(ε3)2) with in-
creasing number of cycles N in the eight tests with 0.58
≤ ID0 ≤ 0.65. In order to purify the data from the influ-

ence of the slightly different initial densities, in Figure 2c
the residual strain εacc has been divided by the void ratio
function fe of the HCA model (see equations in Appendix
A), which was evaluated with the initial void ratio e0 for
simplicity reasons. Obviously, all tests with signals of types
1 to 4, i.e. with a frequently changing amplitude, deliver
a similar residual strain εacc/fe(e0) after 50,000 cycles, ir-
respective of the order of the amplitudes. The tests with
cycles grouped into four or eight packages (types 5 to 8)
even lead to somewhat larger residual strains at the end of
the test (Figure 2c). This is also evident in Figure 2d where
the final residual strain after 50,000 cycles has been plotted
versus the initial relative density ID0. It can be concluded
that the bundling of cycles with frequently changing am-
plitudes into a limited number of packages with constant
amplitudes leads to somewhat higher residual deformations
than in case of the original signal, i.e. the bundling proce-
dure may be regarded as conservative. Furthermore, Figure
2e reveals, that the direction of strain accumulation, i.e. the
direction of the εaccv -εaccq strain paths (εv = ε1 +2ε3 = vol-
umetric strain, εq = 2/3(ε1 − ε3) = deviatoric strain) is
rather unaffected by the order of the amplitudes.

3 HCA model prediction vs. approaches for pack-
ages of cycles proposed in the literature

The prediction of the HCA model for packages of cycles
has been discussed in detail in [35, 38]. Due to its preload-
ing variable gA (see the equations in Appendix A) the HCA
model is able to reproduce the strain accumulation curves
εacc(N) measured in tests with packages of cycles applied at
constant average stress. Figure 3 presents respective exam-
ples. In those six tests on a medium dense, medium coarse
sand four packages with 25,000 cycles each and stress ampli-
tudes qampl = 20, 40, 60 and 80 kPa were applied in different
sequences. A good agreement between the curves resulting
from simulations with the HCA model (blue solid curves in
Figure 3) and the experimental data can be concluded. The
HCA model approximately obeys Miner’s rule [16], i.e. the
sequence of the packages is of minor importance regarding
the final residual strain. This is in good accordance with
both the experimental results in Figure 3 and other respec-
tive studies in the literature [3, 9, 14, 26].

For the prediction of residual deformations due to pack-
ages of cycles with different amplitudes, the approach of
Stewart [26] is frequently addressed in the literature and
recommended for practical applications [1,4,10,11,27]. The
procedure proposed by Stewart [26] is shown schematically
in Figure 4, for three packages of cycles with increasing am-
plitude. The approach is explained in terms of the residual
strain εacc in an element test with cyclic loading, instead
of a horizontal pile head deflection y or a foundation set-
tlement s as it can be frequently found in the literature. In
contrast to the HCA model, Figure 4 assumes an accumu-
lation obeying εacc ∼ Na, but the approach is applicable
to any shape of the accumulation curve. The procedure is
shown in diagrams with both a linear (Figure 4a) and a
log-log scale (Figure 4b).

Three accumulation curves, each corresponding to a
freshly pluviated sample and identical values of void ratio
and average stress, but three different amplitudes 1, 2 and
3 are given in Figure 4. After N1 cycles with the smallest
amplitude 1 a residual strain εacc1 remains in the soil. This
residual strain is converted into an equivalent number of cy-
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Fig. 2: Comparison of tests with frequently changing amplitude and tests with the same cycles applied in four or eight packages:
a) Tested cyclic load signals, b) Accumulated strain εacc as a function of the number of cycles N , c) εacc(N) divided by void ratio
function fe(e0) of the HCA model, d) Residual strain after 50,000 cycles versus initial relative density ID0, e) ε

acc
v -εaccq strain paths.

Only the residual strains caused by the regular cycles are shown (data from first irregular cycle of each package are excluded).
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Fig. 3: Accumulation of residual strain in drained cyclic triaxial tests with packages of cycles applied at constant average stress. The

four amplitudes (qampl = 20, 40, 60 and 80 kPa) were applied in six different sequences (see gray boxes). The experimental results
are compared to the prediction by the HCA model [35, 38].
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clesN∗

1,2 for amplitude 2 of the second package of cycles, i.e.
N∗

1,2 cycles with amplitude 2 cause the same residual strain
as N1 cycles with amplitude 1. This conversion corresponds
to a horizontal projection of the point (N1, ε

acc
1 ) lying on

curve 1 into the point (N∗

1,2, ε
acc
1 ) on curve 2. The cyclic

preloading due to the first package of cycles is considered
in the calculation of the accumulation due to the second
package with N2 cycles, i.e. the calculation starts from the
point (N∗

1,2, ε
acc
1 ) and follows the curve 2 up to the point

(N2,eq, εacc2 ) with N2,eq = N∗

1,2 + N2. Subsequently, the
residual strain εacc2 is converted into an equivalent number
of cycles N∗

2,3 referring to amplitude 3, corresponding to
a horizontal projection of the point (N2,eq, ε

acc
2 ) into the

point (N∗

2,3, ε
acc
2 ) on curve 3. Finally, starting from this

point N3 cycles with amplitude 3 are calculated, leading
to the final residual strain εacc3 at N3,eq = N∗

2,3 +N3. In a
similar manner the procedure can be applied to packages
of cycles with descending amplitude.

The described procedure is applied either to the accu-
mulated portion of deformation only (e.g. [10,11]) or to the
total deformation, comprising also the deformation due to
static loading and due to the first cycle (e.g. [13, 27]). For-
mulas for the equivalent numbers of cycles N ∗

1,2, N
∗

2,3 and
the residual strains εacc1 , εacc2 and εacc3 , assuming either a
power law relationship εacc ∼ Na or a logarithmic function
εacc ∼ 1 + a ln(N) are provided in Appendix B.

The equations in the German recommendations for piles
”EA Pfähle” [4] (see Appendix C), used e.g. for OWPP
monopile foundations under their cyclic horizontal loading
do not obey the concept of Stewart [26]. The procedure
proposed in [4] is shown schematically in Figure 5a. The
comparison with Figure 4 reveals that the equations in [4]
do not correctly consider the cyclic preloading. For exam-
ple, the effect of the cyclic preloading due to the preceding
N1 cycles with amplitude 1 is not considered when calcu-

lating the residual strain εacc2 due to N2 cycles with ampli-
tude 2. As shown by example calculations in [39], using the
equations in [4] the final residual deformation depends on
the chosen reference amplitude, i.e. on the sequence of the
packages. Therefore, Miner’s rule is not fulfilled.

The ”Strain Hardening” method proposed by Monismith
et al. [17] (mentioned also in [27], see the scheme in Figure
5b) is inappropriate as well, since it considers the cyclic
preloading only by the number of cycles, disregarding their
amplitude. Both approaches illustrated in Figure 5 cannot
be recommended for practical applications.

Next, the prediction by the HCA model will be com-
pared with the approach of Stewart [26]. Figure 6 presents
an example in which the development of residual strain
due to three packages of cycles with an increasing se-
quence of amplitudes (N1 = 10,000, N2 = 5000, N3 =

1000, εampl
1 = 2 · 10−4, εampl

2 = 4 · 10−4, εampl
3 = 6 · 10−4)

has been calculated ”by hand” using the equations of the
HCA model along with the approach of Stewart [26] as il-
lustrated in Figure 4. The equations of this example are
given in detail in Appendix D. The calculation results in a
final residual strain of εacc3 = 0.738 %. The curve εacc(N)
generated with the procedure according to Stewart [26] is
also shown as dashed curve in Figure 7. The result for a
descending order of the same amplitudes is given in Fig-
ure 7 as well. The dashed curves in Figure 7 are almost
identical with the solid curves which have been obtained
from element test calculations with the full HCA model.
Based on Figure 7 it can be concluded that the HCA model
equations approximately implement the approach of Stew-
art [26]. Furthermore, Figure 7 once again confirms that
the HCA model approximately obeys Miner’s rule.

The by-hand calculation according to Stewart [26] pre-
sented in Figures 6 and 7 reproduces the residual strain
predicted by the HCA model only approximatively. In Ap-
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pendix E the exact equations for a by-hand calculation of
packages of cycles using the HCA model are given.

4 Tests with a variation of average stress between
packages of cycles - Erasure of cyclic preloading
memory

The series of tests presented in this Section have originally
been performed in order to check if the HCAmodel parame-
ters can be calibrated from multi-stage tests, i.e. tests with
a subsequent application of packages of cycles at various
average stresses and with different stress amplitudes. Such
multi-stage tests were expected to reduce the experimental
effort necessary for the calibration of the HCA model. How-
ever, as demonstrated in the following, the test results re-
vealed an unexpected erasure of cyclic preloading memory
not considered in the HCA model or in any other approach
for the handling of packages of cycles yet.

A natural fine sand taken near-shore in Cuxhaven, Ger-
many has been used in these experiments (FC = 0 %, d50

= 0.10 mm, Cu = 1.6, emin = 0.612, emax = 0.947, %s = 2.65
g/cm3). First, the HCA model parameters of this sand were
calibrated from 17 single-stage drained cyclic triaxial tests
with different stress amplitudes qampl, initial relative den-
sities ID0, average mean pressures pav and average stress
ratios ηav. All samples were prepared by dry air pluviation
and subjected to 100,000 regular cycles with a loading fre-
quency of 0.2 Hz. The regular cycles were preceded by an
irregular cycle with the same amplitude but a lower load-
ing frequency of 0.01 Hz. The data of the irregular cycle
is not further used herein. The strain accumulation curves
εacc(N) measured in the four test series during the regular
cycles are presented in Figure 8, along with the prediction
of the HCA model using the optimum parameters summa-
rized in Table 1. Obviously, the intensity of strain accumu-
lation grows with increasing values of amplitude (Figure
8a), average mean pressure (Figure 8c) and average stress
ratio (Figure 8d) while it decreases if the sand becomes
denser (Figure 8b). The experimental and numerical data
agree well, confirming a good prediction quality of the HCA
model.

ϕcc Campl Ce Cp CY CN1 CN2 CN3

[◦] [-] [-] [-] [-] [10−4] [-] [10−4]
32.6 1.07 0.37 0.01 2.04 4.38 0.103 0.091

Table 1: HCA model parameters of Cuxhaven fine sand

In a second step, four multi-stage tests on medium dense
(0.62 ≤ ID0 ≤ 0.65) air-pluviated samples have been per-
formed. Figure 9a shows the development of accumulated
strain εacc with increasing number of cycles N in a test
similar to those already presented in Figure 3, i.e. with cy-
cles applied at a constant average stress (pav = 200 kPa,
ηav = 0.75). The four packages with 25,000 cycles each and
stress amplitudes qampl = 20, 40, 60 and 80 kPa were ap-
plied in ascending order, using a loading frequency of 0.2
Hz. Figure 9a presents the development of residual strain
with N during the regular cycles. The experimental data
agree well with those presented in Figure 3 and similar test
series in the literature [9,26,35,38]. εacc(N) data stemming
from a recalculation of this test using the HCA model with
the parameters calibrated from the 17 single-stage tests are
shown as red curve in Figure 9a. Due to its preloading vari-
able gA the HCA model is able to reproduce the measured
curve εacc(N) satisfactorily.

In the three other multi-stage tests the average stress has
been monotonically changed between the successive pack-
ages of cycles. Similar as in the first test, each package
comprised 25,000 cycles applied with a loading frequency
of 0.2 Hz. These cycles were preceded by an irregular cycle
of same amplitude but lower frequency (0.01 Hz). In the
second test (Figure 9b) the average stress ratio ηav = 0.75
was kept constant while the average mean pressure was in-
creased from pav = 100 kPa over 200 kPa to 300 kPa. The
amplitude-pressure ratio was chosen as qampl/pav = 0.3 in
all three packages. A variation of the average stress ratio
was investigated in the third and fourth test (Figure 9c,d).
The average mean pressure pav = 200 kPa and the stress
amplitude qampl = 60 kPa were kept constant in both tests.
Five packages of cycles at ηav = 0, 0.5, 0.75, 1.0 and 1.25
were applied in Test No. 3, while the sample of test No. 4
was subjected to three bundles at ηav = 0, 0.75 and 1.25
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only. The curves of residual strain development during the
regular cycles provided in Figure 9b-d exhibit a significant
increase of the rate of strain accumulation at the beginning
of each new package of cycles.

The results of simulations of tests Nos. 2 to 4 with
the HCA model using the parameters calibrated from the
single-stage tests have been added as red curves in Figure
9b-d. Obviously, the strain accumulation rates measured in
the later packages of these three tests are significantly un-
derestimated by the HCA model. This is in contrast to the
simulations of the single-stage tests, where the pressure-
and stress ratio-dependence experimentally observed could
be adequately reproduced (Figure 9c,d). Therefore, the dif-
ferences between the experimental results and the model
prediction apparent in Figure 9b-d must be due to an ef-
fect not captured by the HCA model yet.

The drained cyclic loading leads to subtile changes in
the orientations of the grains or grain contacts, usually
rendering the sand fabric more stable to the subsequent
cycles, i.e. leading to an adaption of the fabric to the ac-
tual cyclic loading and thus to a reduction of the strain
accumulation rate ε̇acc with increasing number of cycles. In
the HCA model this is phenomenologically captured by the
preloading variable gA. In the multi-stage tests presented
in Figure 9b-d the change of the average stress between two
succeeding packages of cycles represents a monotonic load-

ing (Figure 10). It is likely that re-orientations of the grains
caused by this monotonic loading erase some parts or the
whole memory of the preceding cyclic loading. After suffi-
ciently large monotonic strains the cumulative behaviour of
the sand sample during a continued cyclic loading is prob-
ably similar to that of a freshly pluviated one, because the
cyclic preloading history has been completely forgotten. In
the context of the HCA model this means that the preload-
ing variable gA is reduced or even completely erased (to gA

= 0) by a monotonic loading. This effect has not been con-
sidered in calculations with the HCA model so far, i.e. the
preloading variable gA has been assumed to continuously
increase only.

In a next step, it has been tried out if the cumulative
deformations in the multi-stage tests Nos. 2 - 4 can be bet-
ter reproduced by the HCA model if the memory of the
preceding cyclic loading is completely erased at the begin-
ning of each package, i.e. if gA is set back to zero. The
curves provided in cyan colour stem from such simulations.
While the strain accumulation rates in tests Nos. 1 and
2 are considerably overestimated by this assumption, the
curves predicted for tests Nos. 3 and 4 are closer to the
experimental results, in particular in case of the later pack-
ages at higher average stress ratios. This gives hints that
the sand behaves like a freshly pluviated sample in those
packages. However, in case of test No. 2 the memory of the
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cyclic loading history seems not to be fully erased by the
monotonic loading phases between the packages.

Subsequently, it has been studied to which extend the
preloading variable gA has to be reduced at the beginning
of each subsequent package in order to achieve an optimum
reproduction of the experimental curve. A reduction factor
r has been introduced, being equal to one if the preloading
variable remains unchanged (e.g. in test No. 1, see Figure
9a) and equal to zero if the memory of cyclic preloading
history is completely erased. Reduction factors r = 0.45
and r = 0.70 are appropriate for the second test (see blue
curve in Figure 9b), while lower values between 0.3 and 0
are necessary in case of tests Nos. 3 and 4 (blue curves in

Figure 9c,d). A complete loss of memory can be concluded
from the parameter r = 0 necessary for the packages applied
at higher stress ratios. Despite r = 0, the residual strains
predicted by the HCA model for these later packages are
still slightly smaller than those observed in the experiments.
An almost perfect agreement with the test data can be
achieved if the parameter CY of the function fY originally
calibrated from the 17 single-stage tests is slightly increased
(from CY = 2.04 to 2.6 while simultaneously decreasing
CN1 from 4.38 · 10−4 to 3.6 · 10−4, green curves in Figure
9).

The reduction factors r given in Figure 9 are plotted
versus the total strain ∆ε during the monotonic loading
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phases in Figure 11. The residual strain generated during
the first (irregular) cycle of each package is incorporated in
∆ε because the first quarter of this cycle represents a first
(monotonic) loading too, usually leading to much larger
plastic strains than the subsequent cycles. It is evident in
Figure 11 that a strain of ∆ε ≈ 0.4 % is sufficient to cause
a complete erasure of the cyclic preloading history. The
data at smaller values of ∆ε show some scatter. In order
to work out dependencies between r(∆ε) and factors like
stress ratio or density further testing will be undertaken in
future.
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Fig. 10: Monotonic loading due to the change of the average
stress between subsequent packages of cycles
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However, the existing test data (Figures 9, 11) already
clearly demonstrate that the (partial) loss of the cyclic
preloading memory due to monotonic loading may be of
great practical relevance for predictions of cumulative de-
formations if foundations are subjected to a cyclic loading
with varying amplitudes and average stresses. Furthermore,
a foundation is subjected to a monotonic loading during
the construction phase caused by the own weight of the
building. This monotonic loading could partially or fully
erase the memory of a cyclic loading history of the subsoil,
probably leading to larger cumulative deformations during
a subsequent cyclic loading of the foundations. Therefore,
the conservative assumption gA0 = 0 for the initial state
in predictions with the HCA model, usually made because
the cyclic preloading of the in situ soil is unknown and no
suitable determination method is available yet, may be not
as far from reality as previously thought. Beside that, the

observed effect could be utilized for a reduction of the num-
ber of cyclic tests necessary for a calibration of the HCA
model parameters. If a sample already tested under a cer-
tain cyclic loading condition can be reset to a state with
gA0 = 0 (similar to a freshly pluviated sample), simply by
applying a rather small monotonic loading, several average
stresses or amplitudes could be tested in succession on a
single sample.

All sequences of average stresses tested in Figure 9 rep-
resent a ”first loading” in the sense that pav or ηav have
been increased from bundle to bundle. Further experimen-
tal work should also include unloading paths between sub-
sequent packages of cycles. Some experimental studies in
the literature give hints that such unloading may dramat-
ically reduce the cumulative rates [14]. Furthermore, an-
other test series performed by the authors (Fig. 2 in [20])
has demonstrated a strong change of the direction of strain
accumulation m (i.e. of the direction of the εaccv -εaccq strain
path) after an unloading between subsequent bundles of
cycles.

5 Benefits vs. limitations of the HCA model
The test series presented in Section 4 has revealed an ef-
fect not captured in simulations with the HCA model yet.
This is taken as an occasion to face the advantages and
benefits of the HCA model with other known deficits and
limitations.

The following advantages or benefits of the HCA model
can be addressed:

• The HCA model is based on an extensive data base
with cyclic triaxial tests performed on various kinds
of granular materials with drained or undrained con-
ditions [30, 32, 33, 37].

• The prediction of the HCA model has been validated
based on simulations of element tests, model tests with
different scales and field tests [25, 40–43].

• In principle, simulations with the HCA model are not
restricted with respect to the number of cycles. How-
ever, the simulated number of cycles should not consid-
erably exceed the maximum number of cycles applied
in the laboratory tests used as the basis for the cali-
bration of the HCA model parameters.

• The HCA model can be applied to any type of founda-
tion or geotechnical structure. In contrast to more sim-
ple engineer-oriented models (e.g. those for monopile
foundations of offshore wind turbines [1,5,27]) the pro-
cedure with the HCA model is not restricted to a cer-
tain type of foundation or a certain type of cyclic load-
ing.

• The HCA model does not only allow to predict the
development of the permanent deformations with in-
creasing number of cycles, but also to study the com-
plex soil-structure interaction under high-cyclic load-
ing, e.g. changes of the stresses at the contact surfaces
between the structure and the soil [43].

The following deficits and limitations of the HCA model
should be mentioned:

• A full calibration of the HCA model based on at
least 11 drained cyclic triaxial tests is quite laborious.
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Therefore, a simplified calibration procedure based on
correlations with granulometric or index properties has
been developed [33, 37].

• An application of the HCA model is restricted to strain
amplitudes lower than εampl = 10−3, because this is
the range of strains usually encompassed by cyclic lab-
oratory tests.

• The HCAmodel in its present form does not accurately
describe the deformations due to a monotonic loading
applied simultaneously with a cyclic loading. Practi-
cally, such monotonic loading can result from redistri-
butions of stresses within a structure caused by a cyclic
loading, leading to changes of the average foundation
stresses [43]. In a simulation with the HCA model the
monotonic loading is also calculated with the elastic
stiffness E of the HCA model (see Eq. (1) in Appendix
A), which is larger [34, 36] than a typical stiffness for
monotonic loading. Therefore, the deformations caused
by the monotonic portion of loading may be underes-
timated.

• The definition of the strain amplitude for multidimen-
sional strain paths incorporated in the HCA model
[19] does apply to elliptical paths only. An extension
for more complicated paths resulting e.g. from several
sources of cyclic loading acting simultaneously or from
moving sources (e.g. passing trains) is the matter of
current research [20, 31].

• The loss of memory of the cyclic loading history caused
by monotonic loading phases is not captured in the
HCA model right now, as discussed in Section 4.

6 Summary, conclusions and outlook
In a series of drained cyclic triaxial tests, four amplitudes
have been applied in different sequences. In the first part of
this series, load signals with amplitudes changing from one
cycle to another were tested. In the second part, the same
amplitudes were grouped into four or eight packages of cy-
cles each with a constant amplitude. These packages were
applied in either an ascending or descending order of the
amplitudes. Interestingly, the tests with the bundled ampli-
tudes resulted in slightly larger final residual strains than
those with frequently changing amplitudes. Therefore, the
bundling of a random cyclic loading into packages of cycles
seems conservative. Such bundling is essential for calcula-
tions with a high-cycle accumulation (HCA) model. Look-
ing at the tests with packages of cycles, Miner’s rule was
approximately fulfilled, i.e. the sequence of the amplitudes
was of minor importance regarding the final residual defor-
mations. Furthermore, the direction of accumulation, i.e.
the ratio of accumulated deviatoric and volumetric strains
was found almost unaffected by the various sequences of
the amplitudes.

The paper further demonstrates that the HCA model
of Niemunis et al. [19] approximately implements both
Miner’s rule and the approach of Stewart [26], which is fre-
quently cited as a procedure for the handling of packages of
cycles when predicting permanent deformations, nowadays
in particular in the context of foundations for offshore wind
power plants. Other approaches for bundles of cycles as e.g.
that recommended in the recommendations for piles ”EA
Pfähle” [4] have been proven erroneous.

A second series of drained triaxial tests with packages
of cycles applied successively at different average stresses
revealed an interesting effect: The memory of the sand con-
cerning its cyclic preloading history can be partially or fully
erased by a monotonic loading. The cyclic loading leads to
subtile changes in the orientations of the grains or grain
contacts which render the sand fabric more resistant to sub-
sequent cycles. Substantial reorientations of the grains due
to a monotonic loading erase such adaption of the grain
skeleton. In case of the present test series the change of the
average stress between subsequent packages of cycles rep-
resents such monotonic loading. In the context of the HCA
model these findings mean that the variable gA memorizing
the cyclic preloading can be reduced or even fully erased
by a monotonic loading. Monotonic strains of about 0.4 %
seem to be sufficient to bring gA back to zero. It has been
demonstrated that the HCA model may strongly underes-
timate the residual strain accumulation in such multi-stage
tests if the gA reduction is not taken into account.

Further testing will be performed in order to quantify
the dependence of the gA reduction on factors like density
or the length and direction of the monotonic stress or strain
paths between the bundles of cycles.
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Appendix
Appendix A: Equations of the HCA model
The basic equation of the HCA model reads

σ̇ = E : (ε̇− ε̇
acc − ε̇

pl) (1)

with the stress rate σ̇ of the effective Cauchy stress σ (com-
pression positive), the strain rate ε̇ (compression positive),

the accumulation rate ε̇
acc, a plastic strain rate ε̇

pl (neces-
sary only for stress paths touching the yield surface) and
the barotropic elastic stiffness E. In the context of HCA
models the dot over a symbol means a derivative with re-
spect to the number of cycles N (instead of time t), i.e.
ṫ = ∂ t /∂N . Depending on the boundary conditions, Eq.
(1) predicts either a change of average stress (σ̇ 6= 0) or an
accumulation of residual strain (ε̇ 6= 0) or both.

For ε̇acc in Eq. (1) the following multiplicative approach
is used:

ε̇
acc = ε̇acc m (2)

with the direction of strain accumulation (flow rule) m =
ε̇
acc/‖ε̇acc‖ = (ε̇acc)→ (unit tensor) and the intensity of

strain accumulation ε̇acc = ‖ε̇acc‖. The flow rule of the
modified Cam clay (MCC) model is applied for m:

m =

[
1

3

(

pav −
(qav)2

M2pav

)

1+
3

M2
(σav)∗

]→

(3)

where t→ = t/‖t‖ denotes the normalization of a tensorial
quantity. For the triaxial case the critical stress ratio M =
F Mcc is calculated from

F =







1 +Mec/3 for ηav ≤ Mec

1 + ηav/3 for Mec < ηav < 0
1 for ηav ≥ 0

(4)

wherein

Mcc =
6 sinϕcc

3− sinϕcc
and Mec = −

6 sinϕcc

3 + sinϕcc
(5)

with parameter ϕcc.
The intensity of strain accumulation ε̇acc in Eq. (2) is

calculated as a product of six functions:

ε̇acc = fampl ḟN fe fp fY fπ (6)

each considering a single influencing parameter (see Ta-
ble 2), i.e. the strain amplitude εampl (function fampl), the

Function Material

constants

fampl = min

{(
εampl

10−4

)Campl

; 10Campl

}

Campl

ḟN = ḟA
N + ḟB

N CN1

ḟA
N = CN1CN2 exp

[

−
gA

CN1fampl

]

CN2

ḟB
N = CN1CN3 CN3

fe =
(Ce − e)2

1 + e

1 + emax

(Ce − emax)2
Ce

fp = exp

[

−Cp

(
pav

100 kPa
− 1

)]

Cp

fY = exp
(
CY Ȳ av

)
CY

Table 2: Summary of the functions and material constants of
the HCA model

cyclic preloading gA (ḟN ), void ratio e (fe), average mean
pressure pav (fp), average stress ratio ηav or Ȳ av (fY ) and
the effect of polarization changes (fπ = 1 for a constant
polarization as in the case of the uniaxial cycles of the test
series presented in this paper). The normalized stress ratio
Ȳ av used in fY is zero for isotropic stresses and one on the
critical state line. The function Y of Matsuoka & Nakai [15]
is used for that purpose:

Ȳ av =
Y av − 9

Yc − 9
with Yc =

9− sin2 ϕcc

1− sin2 ϕcc

(7)

Y av =
27(3 + ηav)

(3 + 2ηav)(3− ηav)
(8)

For the prediction of strain accumulation due to pack-
ages of cycles with different amplitudes the function ḟN and
the preloading variable gA are of primary importance. In
the drained cyclic triaxial tests the curves εacc(N) of the
residual strain versus the number of cycles were found to
run proportional to the function fN (compare Figure 9):

fN = CN1 [ln(1 + CN2N) + CN3N ] (9)

It consists of a logarithmic and a linear portion. The deriva-
tive with respect to N is

ḟN =
CN1CN2

1 + CN2N
︸ ︷︷ ︸

ḟA
N

+ CN1CN3
︸ ︷︷ ︸

ḟB
N

(10)

It can be split into an N -dependent portion ḟA
N and a con-

stant portion ḟB
N . However, the number of cycles N alone is

not a suitable state variable for the quantification of cyclic
preloading (historiotropy) since it contains no information
about the intensity of the cycles in the past. A suitable
historiotropic variable must consider both, the number and
the amplitude of the previous cycles. Such variable denoted
gA has been introduced into the HCA model. The deriva-
tion of the equations necessary for calculations with gA is
briefly summarized in the following. First, the product of
fampl and ḟN is denoted as ġ, which can be again split into
an N -dependent portion ġA and a constant portion ġB :

ġ = famplḟN = fampl(ḟ
A
N + ḟB

N )

12
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= famplḟ
A
N + famplḟ

B
N = ġA + ġB (11)

For the quantification of cyclic preloading only the N -
dependent portion ġA is of interest. For a cyclic loading
with constant strain amplitude (fampl = constant), the
preloading variable gA can be obtained by integration as
follows:

gA =

∫

ġAdN =

∫

famplḟ
A
N dN

= famplCN1 ln(1 + CN2N) (12)

If this equation is rearranged for N , one obtains:

N =
1

CN2

[

exp

(
gA

famplCN1

)

− 1

]

(13)

Setting Eq. (13) in ḟA
N according to Eq. (10) delivers the

expression for ḟA
N given in Table 2:

ḟA
N = CN1CN2 exp

(

−
gA

famplCN1

)

(14)

and thus a relationship between the rate and the actual
value of the preloading variable:

ġA = famplCN1CN2 exp

(

−
gA

famplCN1

)

(15)

The rate of gB is independent of cyclic preloading:

ġB = famplCN1CN3 (16)

In the following, the procedure for an incremental cal-
culation with the HCA model is briefly demonstrated by
means of a drained triaxial test with stress cycles. Only
the total strain εacc is considered. First, an initial value for
gA has to be chosen. For a freshly pluviated sample the
choice of gA0 = 0 is justified. For each increment ∆N of the
number of cycles the calculation procedure is as follows:

1. Calculation of ḟA
N from Eq. (14) with the actual value

of the preloading variable gA, calculation of ḟB
N =

CN1CN3 and ḟN = ḟA
N + ḟB

N

2. Calculation of the intensity of strain accumulation ε̇acc

from Eq. (6)

3. For the drained case ε̇ = ε̇acc follows from Eq. (1)

4. Calculation of the strain increment ∆ε = ε̇ ∆N , up-
date of strain ε(N +∆N) = ε(N) + ∆ε

5. Calculation of the rate of the preloading variable ġA

from Eq. (15) with the actual value of gA

6. Calculation of the increment of the preloading vari-
able ∆gA = ġA ∆N , update of the preloading variable
gA(N+∆N) = gA(N)+∆gA. This updated preloading
variable enters the calculation of the next increment
∆N .

Appendix B: Equations of the approach of Stewart
[26]
If the accumulation of strain due to Ni cycles with ampli-
tude ”i” is described by a logarithmic function

εacci (Ni) = εacci (N = 1)[1 + t ln(Ni)] (17)

with the residual strain εacci (N = 1) due to the first cy-
cle and a parameter t, then the residual strains εacc1 , εacc2

and εacc3 after the first, second and third package with the
numbers of cycles N1, N2 and N3 are calculated as follows:

εacc1 = εacc1 (N = 1)[1 + t ln(N1)]

N∗

1,2 = exp

{
1

t

[
εacc1

εacc2 (N = 1)
− 1

]}

= exp

{
1

t

[
εacc1 (N = 1)[1 + t ln(N1)]

εacc2 (N = 1)
− 1

]}

εacc2 = εacc2 (N = 1)[1 + t ln(N∗

1,2 +N2)]

= εacc2 (N = 1)[1 + t ln(N2,eq)]

N∗

2,3 = exp

{
1

t

[
εacc2

εacc3 (N = 1)
− 1

]}

= exp

{
1

t

[
εacc2 (N = 1)[1 + t ln(N∗

1,2 +N2)]

εacc3 (N = 1)
− 1

]}

εacc3 = εacc3 (N = 1)
[
1 + t ln(N∗

2,3 +N3)
]

= εacc3 (N = 1) [1 + t ln(N3,eq)]

For i packages of cycles the equations generally read:

N∗

i−1,i = exp

{
1

t

[
εacci−1

εacci (N = 1)
− 1

]}

= exp

{
1

t

[
εacci−1(N = 1)[1 + t ln(N∗

i−2,i−1 +Ni−1)]

εacci (N = 1)
− 1

]}

(18)

εacci = εacci (N = 1)
[
1 + t ln(N∗

i−1,i +Ni)
]

= εacci (N = 1) [1 + t ln(Ni,eq)] (19)

If a power law relationship

εacci (Ni) = εacci (N = 1)(Ni)
α (20)

is applied instead of the logarithmic function, then the re-
cursive formulas for the equivalent number of cycles N ∗

i−1,i
and for the residual strain εacci after i packages of cycles
read:

N∗

i−1,i =

(
εacci−1

εacci (N = 1)

)1/α

=

(
εacci−1(N = 1)

εacci (N = 1)

)1/α

(N∗

i−2,i−1 +Ni−1) (21)

εacci = εacci (N = 1)(N∗

i−1,i +Ni)
α (22)

Appendix C: Equations of recommendations for
piles ”EA Pfähle” [4]
The procedure proposed in the recommendations ”EA
Pfähle” [4] for piles under horizontal cyclic loading is ex-
plained on the basis of the logarithmic function (17). Al-
though the equations are given in terms of the lateral pile
head deflection y in [4], for the sake of consistency within
this paper, they are written in terms of an accumulated
strain εacc in the following. According to [4] a reference
amplitude has to be chosen, which is denoted by the index
”ref”. All other amplitudes (numbered from 1 to k) are re-
ferred to this reference value. The accumulated strain due

13
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to k + 1 packages of cycles is obtained from:

εacc = εaccref (N = 1)

[

1 + t ln

(

Nref +

k∑

i=1

N∗

i,ref

)]

= εaccref (N = 1) [1 + t ln(Nref,eq)] (23)

with

N∗

i,ref = exp

{
1

t

[
εacci (N = 1)[1 + t ln(Ni)]

εaccref (N = 1)
− 1

]}

(24)

In [4] the equations (23) and (24) are addressed as imple-
mentation of the concept of Stewart [26]. However, it can
be easily demonstrated that this is not correct.

For two packages with the number of cycles N1 and N2

and the residual strains εacc1 (N = 1) and εacc2 (N = 1) after
the first cycle, Eqs. (23) and (24) lead to the same solution
as Eqs. (18) and (19) if amplitude 2 is used as reference:

N∗

1,2 = exp

{
1

t

[
εacc1 (N = 1)[1 + t ln(N1)]

εacc2 (N = 1)
− 1

]}

εacc2 = εacc2 (N = 1)
[
1 + t ln(N∗

1,2 +N2)
]

= εacc2 (N = 1) [1 + t ln(N2,eq)]

For three or more packages of cycles, however, the solutions
of Eqs. (23) and (24) differ from those of Eqs. (18) and
(19). Considering three packages of cycles and choosing the
amplitude of the third package as reference, one obtains:

N∗

1,3 = exp

{
1

t

[
εacc1 (N = 1)[1 + t ln(N1)]

εacc3 (N = 1)
− 1

]}

N∗

2,3 = exp

{
1

t

[
εacc2 (N = 1)[1 + t ln(N2)]

εacc3 (N = 1)
− 1

]}

εacc3 = εacc3 (N = 1)
[
1 + t ln(N∗

1,3 +N∗

2,3 +N3)
]

= εacc3 (N = 1) [1 + t ln(N3,eq)]

A graphical presentation of Eqs. (23) and (24) for three
packages of cycles with ascending order of amplitudes and
choosing the largest amplitude 3 as reference is given in
Figure 5a. As evident in Figure 5a, all packages of cycles
with amplitudes differing from the reference one are treated
separately. The residual strain εacc1 resulting from N1 cycles
with amplitude 1 is converted into an equivalent number of
cyclesN∗

1,3 referring to amplitude 3. Analogously, the resid-
ual strain εacc2 due to N2 cycles with amplitude 2 results in
N∗

2,3. In contrast to the approach of Stewart (Appendix B)
the cyclic preloading due to the N1 cycles with amplitude 1
is not considered when evaluating N∗

2,3. Finally, N
∗

1,3, N
∗

2,3
and the number of cycles N3 applied with the reference
amplitude are added. The resulting residual strain is calcu-
lated as the result of N∗

1,3+N∗

2,3+N3 cycles with amplitude
3.

Appendix D: Example in Figure 6 - By hand calcu-
lation with the HCA model following the approach
of Stewart [26]
The HCA model parameters in Table 3 have been used for
the example in Figure 6. For a relative density ID = 0.6
(corresponds to a void ratio e = 0.828) one obtains a value
of fe = 0.283 for the void ratio function. The average stress
with pav = 200 kPa and ηav = 0.75 leads to fp = 0.787 and

Campl Ce Cp CY CN1 CN2 CN3

1.32 0.60 0.24 1.74 3.03 · 10−4 0.37 2.36 · 10−5

Table 3: HCA model parameters of Karlsruhe fine sand (emin =
0.677, emax = 1.054)

fY = 1.668. In this example the functions fe, fp and fY
are assumed constant.

The three packages of cycles according to Table 4 have
been applied in ascending order. If a freshly pluviated sam-

ple would be loaded with the constant amplitude εampl
1 of

the first package of cycles, one would obtain a development
of the residual strain with increasing number of cycles ac-
cording to the red curve in Figure 6:

εacc(N) = famplfefpfY fN

= 2.497 · 0.283 · 0.787 · 1.668 · 3.03 · 10−4

·
[
ln(1 + 0.37 ·N) + 2.36 · 10−5 ·N

]

= 2.81 · 10−4 ·
[
ln(1 + 0.37 ·N) + 2.36 · 10−5 ·N

]

Analogously, a freshly pluviated sample loaded with am-
plitude 2 would be compacted according to (blue curve in
Figure 6):

εacc(N) = 7.02 · 10−4 ·
[
ln(1 + 0.37 ·N) + 2.36 · 10−5 ·N

]

For amplitude 3 (green curve in Figure 6) one obtains:

εacc(N) = 11.98 · 10−4 ·
[
ln(1 + 0.37 ·N) + 2.36 · 10−5 ·N

]

The residual strains εacc1 , εacc2 und εacc3 after the packages
of cycles Nos. 1, 2 and 3 result from the following equations:

εacc1 = 2.81 · 10−4 · [ln(1 + 0.37 · 10000)

+ 2.36 · 10−5 · 10000
]
= 0.238 %

0.238 % = 7.02 · 10−4 ·
[
ln(1 + 0.37 ·N∗

1,2)

+ 2.36 · 10−5 ·N∗

1,2

]
→ N∗

1,2 = 77.0

εacc2 = 7.02 · 10−4 ·
[
ln(1 + 0.37 · (N∗

1,2 +N2))

+ 2.36 · 10−5 · (N∗

1,2 +N2)
]

= 7.02 · 10−4 · [ln(1 + 0.37 · (77.0 + 5000))

+ 2.36 · 10−5 · (77.0 + 5000)
]
= 0.537 %

0.537 % = 11.89 · 10−4 ·
[
ln(1 + 0.37 ·N∗

2,3)

+ 2.36 · 10−5 ·N∗

2,3

]
→ N∗

2,3 = 235.5

εacc3 = 11.98 · 10−4 ·
[
ln(1 + 0.37 · (N∗

2,3 +N3))

+ 2.36 · 10−5 · (N∗

2,3 +N3)
]

= 11.98 · 10−4 · [ln(1 + 0.37 · (235.5+ 1000))

+ 2.36 · 10−5 · (235.5 + 1000)
]
= 0.738 %

The analogous calculation with descending amplitudes de-
livers εacc1 = 0.712 %, εacc2 = 0.730 % and εacc3 = 0.737
%. Therefore, the residual strain at the end of the third
package of cycles is almost identical for an ascending and
a descending order of the amplitudes.

Appendix E: By hand calculation with the exact
equations of the HCA model
The by hand calculation according to Stewart [26] pre-
sented in Figures 6 and 7 reproduces the residual strain
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Package Number Strain Amplitude
No of cycles amplitude function

Ni εampl
i fampl

i

1 10000 2 · 10−4 2.497
2 5000 4 · 10−4 6.233
3 1000 6 · 10−4 10.645

Table 4: Packages of cycles considered in the example in Figure
6

predicted by the HCA model only approximatively. The
reason is explained below. In the following, the exact equa-
tions for a by hand calculation of packages of cycles using
the HCA model are presented. Two different strategies can
be distinguished, one using the preloading variable gAi and
the other one an equivalent number of cycles N ∗

i−1,i [39].

First, the equations in terms of gAi are provided. The
preloading variable gAi at the end of a package i can be
calculated from the preloading variable gAi−1 at the begin-
ning of that package, the amplitude function fampl,i and
the number of cycles Ni of the package:

gAi = fampl,iCN1 ln

[

exp

(
gAi−1

CN1fampl,i

)

+ CN2Ni

]

(25)

The increase of the residual strain due to the package i is
then obtained from:

∆εacci = fefpfY

{

gAi − gAi−1 +
CN1CN3

CN2

fampl,i·

·

[

exp

(
gAi

fampl,iCN1

)

− exp

(
gAi−1

fampl,iCN1

)]}

(26)

and the residual strain at the end of package i is:

εacci = εacci−1 +∆εacci (27)

The equivalent number of cycles N∗

i−1,i is introduced as
follows:

gAi = fampl,iCN1 ln
[
1 + CN2(Ni +N∗

i−1,i)
]

(28)

The equivalent number of cycles N∗

i−1,i according to Eq.
(28) considers the N -dependent portion of the rate of strain
accumulation only. In contrast, the procedure of Stew-
art [26] does not distinguish between N -dependent and N -
independent parts of the strain accumulation curve, leading
to the deviations from the HCA model prediction visible in
Figure 7. The equivalent number of cycles at the end of
package i− 1, referring to the amplitude of the next pack-
age i reads:

N∗

i−1,i =
1

CN2

{

[
1 + CN2(Ni−1 +N∗

i−2,i−1)
]

fampl,i−1

fampl,i − 1

}

(29)

The increase of strain due to package i is then calculated
from:

∆εacci = fefpfY CN1{

−fampl,i−1 ln[1 + CN2(Ni−1 +N∗

i−2,i−1)]

+fampl,i[ln[1 + CN2(Ni +N∗

i−1,i)] + CN3Ni]}

(30)

The residual strain at the end of package i is:

εacci = fefpfY CN1

[(
i∑

1

fampl,iCN3Ni

)

+fampl,i ln
(
1 + CN2

(
Ni +N∗

i−1,i

))]
(31)

Examples for a calculation with both sets of equations, us-
ing either gAi or N∗

i−1,i, are provided in [39].
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